16,352 research outputs found
Representation and Characterization of Non-Stationary Processes by Dilation Operators and Induced Shape Space Manifolds
We have introduce a new vision of stochastic processes through the geometry
induced by the dilation. The dilation matrices of a given processes are
obtained by a composition of rotations matrices, contain the measure
information in a condensed way. Particularly interesting is the fact that the
obtention of dilation matrices is regardless of the stationarity of the
underlying process. When the process is stationary, it coincides with the
Naimark Dilation and only one rotation matrix is computed, when the process is
non-stationary, a set of rotation matrices are computed. In particular, the
periodicity of the correlation function that may appear in some classes of
signal is transmitted to the set of dilation matrices. These rotation matrices,
which can be arbitrarily close to each other depending on the sampling or the
rescaling of the signal are seen as a distinctive feature of the signal. In
order to study this sequence of matrices, and guided by the possibility to
rescale the signal, the correct geometrical framework to use with the
dilation's theoretic results is the space of curves on manifolds, that is the
set of all curve that lies on a base manifold. To give a complete sight about
the space of curve, a metric and the derived geodesic equation are provided.
The general results are adapted to the more specific case where the base
manifold is the Lie group of rotation matrices. The notion of the shape of a
curve can be formalized as the set of equivalence classes of curves given by
the quotient space of the space of curves and the increasing diffeomorphisms.
The metric in the space of curve naturally extent to the space of shapes and
enable comparison between shapes.Comment: 19 pages, draft pape
The Abuse of Power: A Theological Problem
Reviewed Book: Poling, James N. (James Newton). The Abuse of Power: A Theological Problem. Nashville: Abingdon Press, 1991
Dynamic Security-aware Routing for Zone-based data Protection in Multi-Processor System-on-Chips
In this work, we propose a NoC which enforces the
encapsulation of sensitive traffic inside the asymmetrical security
zones while using minimal and non-minimal paths. The NoC
routes guarantee that the sensitive traffic is communicated only
through the trusted nodes which belong to the security zone.
As the shape of the zones may change during operation, the
sensitive traffic must be routed through low-risk paths. We test
our proposal and we show that our solution can be an efficient
and scalable alternative for enforce the data protection inside the
MPSoC
Vortex state microwave resistivity in Tl-2212 thin films
We present measurements of the field induced changes in the 47 GHz complex
resistivity, , in TlBaCaCuO
(TBCCO) thin films with 105 K, prepared on CeO buffered
sapphire substrates. At low fields (10 mT) a very small irreversible
feature is present, suggesting a little role of intergranular phenomena. Above
that level exhibits a superlinear dependence with the
field, as opposed to the expected (at high frequencies) quasilinear behaviour.
We observe a crossover between predominantly imaginary to predominantly real
(dissipative) response with increasing temperature and/or field. In addition,
we find the clear scaling property , where the scaling field maps closely the melting
field measured in single crystals. We discuss our microwave results in terms of
loss of flux lines rigidity.Comment: 8 pages, 3 figures, proceedings of 9th HTSHFF, accepted for
publication on J. Supercon
- …
