13,668 research outputs found

    Schemes for the observation of photon correlation functions in circuit QED with linear detectors

    Full text link
    Correlations are important tools in the characterization of quantum fields. They can be used to describe statistical properties of the fields, such as bunching and anti-bunching, as well as to perform field state tomography. Here we analyse experiments by Bozyigit et al. [arXiv:1002.3738] where correlation functions can be observed using the measurement records of linear detectors (i.e. quadrature measurements), instead of relying on intensity or number detectors. We also describe how large amplitude noise introduced by these detectors can be quantified and subtracted from the data. This enables, in particular, the observation of first- and second-order coherence functions of microwave photon fields generated using circuit quantum-electrodynamics and propagating in superconducting transmission lines under the condition that noise is sufficiently low.Comment: v1: 11 pages, 7 figures , v2: Minor revisions throughout for clarity. Added a few references and an appendi

    Equality of symmetrized tensors and the coordinate ring of the flag variety

    Full text link
    In this note we give a transparent proof of a result of da Cruz and Dias da Silva on the equality of symmetrized decomposable tensors. This will be done by explaining that their result follows from the fact that the coordinate ring of a flag variety is a unique factorization domain.Comment: 5 page

    DEA investment strategy in the Brazilian stock market

    Get PDF
    This paper presents a multi-period investment strategy using Data Envelopment Analysis (DEA) in the Brazilian stock market. Results show that the returns based on the DEA strategy were superior to the returns of a Brazilian stock index in most of the 22 quarters analyzed, presenting a significant Jensen's alpha.

    Predicting the connectivity of primate cortical networks from topological and spatial node properties

    Get PDF
    The organization of the connectivity between mammalian cortical areas has become a major subject of study, because of its important role in scaffolding the macroscopic aspects of animal behavior and intelligence. In this study we present a computational reconstruction approach to the problem of network organization, by considering the topological and spatial features of each area in the primate cerebral cortex as subsidy for the reconstruction of the global cortical network connectivity. Starting with all areas being disconnected, pairs of areas with similar sets of features are linked together, in an attempt to recover the original network structure. Inferring primate cortical connectivity from the properties of the nodes, remarkably good reconstructions of the global network organization could be obtained, with the topological features allowing slightly superior accuracy to the spatial ones. Analogous reconstruction attempts for the C. elegans neuronal network resulted in substantially poorer recovery, indicating that cortical area interconnections are relatively stronger related to the considered topological and spatial properties than neuronal projections in the nematode. The close relationship between area-based features and global connectivity may hint on developmental rules and constraints for cortical networks. Particularly, differences between the predictions from topological and spatial properties, together with the poorer recovery resulting from spatial properties, indicate that the organization of cortical networks is not entirely determined by spatial constraints
    corecore