1,195 research outputs found

    Invariance of Weight Distributions in Rectified MLPs

    Full text link
    An interesting approach to analyzing neural networks that has received renewed attention is to examine the equivalent kernel of the neural network. This is based on the fact that a fully connected feedforward network with one hidden layer, a certain weight distribution, an activation function, and an infinite number of neurons can be viewed as a mapping into a Hilbert space. We derive the equivalent kernels of MLPs with ReLU or Leaky ReLU activations for all rotationally-invariant weight distributions, generalizing a previous result that required Gaussian weight distributions. Additionally, the Central Limit Theorem is used to show that for certain activation functions, kernels corresponding to layers with weight distributions having 00 mean and finite absolute third moment are asymptotically universal, and are well approximated by the kernel corresponding to layers with spherical Gaussian weights. In deep networks, as depth increases the equivalent kernel approaches a pathological fixed point, which can be used to argue why training randomly initialized networks can be difficult. Our results also have implications for weight initialization.Comment: ICML 201

    Bayesian Inference in Estimation of Distribution Algorithms

    Get PDF
    Metaheuristics such as Estimation of Distribution Algorithms and the Cross-Entropy method use probabilistic modelling and inference to generate candidate solutions in optimization problems. The model fitting task in this class of algorithms has largely been carried out to date based on maximum likelihood. An alternative approach that is prevalent in statistics and machine learning is to use Bayesian inference. In this paper, we provide a framework for the application of Bayesian inference techniques in probabilistic model-based optimization. Based on this framework, a simple continuous Bayesian Estimation of Distribution Algorithm is described. We evaluate and compare this algorithm experimentally with its maximum likelihood equivalent, UMDAG c

    Population-based continuous optimization, probabilistic modelling and mean shift

    Get PDF
    Evolutionary algorithms perform optimization using a population of sample solution points. An interesting development has been to view population-based optimization as the process of evolving an explicit, probabilistic model of the search space. This paper investigates a formal basis for continuous, population-based optimization in terms of a stochastic gradient descent on the Kullback-Leibler divergence between the model probability density and the objective function, represented as an unknown density of assumed form. This leads to an update rule that is related and compared with previous theoretical work, a continuous version of the population-based incremental learning algorithm, and the generalized mean shift clustering framework. Experimental results are presented that demonstrate the dynamics of the new algorithm on a set of simple test problems

    GENFIRE: A generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging

    Get PDF
    Tomography has made a radical impact on diverse fields ranging from the study of 3D atomic arrangements in matter to the study of human health in medicine. Despite its very diverse applications, the core of tomography remains the same, that is, a mathematical method must be implemented to reconstruct the 3D structure of an object from a number of 2D projections. In many scientific applications, however, the number of projections that can be measured is limited due to geometric constraints, tolerable radiation dose and/or acquisition speed. Thus it becomes an important problem to obtain the best-possible reconstruction from a limited number of projections. Here, we present the mathematical implementation of a tomographic algorithm, termed GENeralized Fourier Iterative REconstruction (GENFIRE). By iterating between real and reciprocal space, GENFIRE searches for a global solution that is concurrently consistent with the measured data and general physical constraints. The algorithm requires minimal human intervention and also incorporates angular refinement to reduce the tilt angle error. We demonstrate that GENFIRE can produce superior results relative to several other popular tomographic reconstruction techniques by numerical simulations, and by experimentally by reconstructing the 3D structure of a porous material and a frozen-hydrated marine cyanobacterium. Equipped with a graphical user interface, GENFIRE is freely available from our website and is expected to find broad applications across different disciplines.Comment: 18 pages, 6 figure

    Framework for software architecture visualization assessment.

    Get PDF
    In order to assess software architecture visualisation strategies, we qualitatively characterize then construct an assessment framework with 7 key areas and 31 features. The framework is used for evaluation and comparison of various strategies from multiple stakeholder perspectives. Six existing software architecture visualisation tools and a seventh research tool were evaluated. All tools exhibited shortcomings when evaluated in the framework

    Nanoscale mosaicity revealed in peptide microcrystals by scanning electron nanodiffraction.

    Get PDF
    Changes in lattice structure across sub-regions of protein crystals are challenging to assess when relying on whole crystal measurements. Because of this difficulty, macromolecular structure determination from protein micro and nanocrystals requires assumptions of bulk crystallinity and domain block substructure. Here we map lattice structure across micron size areas of cryogenically preserved three-dimensional peptide crystals using a nano-focused electron beam. This approach produces diffraction from as few as 1500 molecules in a crystal, is sensitive to crystal thickness and three-dimensional lattice orientation. Real-space maps reconstructed from unsupervised classification of diffraction patterns across a crystal reveal regions of crystal order/disorder and three-dimensional lattice tilts on the sub-100nm scale. The nanoscale lattice reorientation observed in the micron-sized peptide crystal lattices studied here provides a direct view of their plasticity. Knowledge of these features facilitates an improved understanding of peptide assemblies that could aid in the determination of structures from nano- and microcrystals by single or serial crystal electron diffraction

    Modularity based linkage model for neuroevolution

    Full text link
    Crossover between neural networks is considered disruptive due to the strong functional dependency between connection weights. We propose a modularity-based linkage model at the weight level to preserve functionally dependent communities (building blocks) in neural networks during mixing. A proximity matrix is built by estimating the dependency between weights, then a community detection algorithm maximizing modularity is run on the graph described by such matrix. The resulting communities/groups of parameters are considered to be mutually independent and used as crossover masks in an optimal mixing EA. A variant is tested with an operator that neutralizes the permutation problem of neural networks to a degree. Experiments were performed on 8 and 10-bit parity problems as the intrinsic hierarchical nature of the dependencies in these problems are challenging to learn. The results show that our algorithm finds better, more functionally dependent linkage which leads to more successful crossover and better performance
    corecore