1,195 research outputs found
Invariance of Weight Distributions in Rectified MLPs
An interesting approach to analyzing neural networks that has received
renewed attention is to examine the equivalent kernel of the neural network.
This is based on the fact that a fully connected feedforward network with one
hidden layer, a certain weight distribution, an activation function, and an
infinite number of neurons can be viewed as a mapping into a Hilbert space. We
derive the equivalent kernels of MLPs with ReLU or Leaky ReLU activations for
all rotationally-invariant weight distributions, generalizing a previous result
that required Gaussian weight distributions. Additionally, the Central Limit
Theorem is used to show that for certain activation functions, kernels
corresponding to layers with weight distributions having mean and finite
absolute third moment are asymptotically universal, and are well approximated
by the kernel corresponding to layers with spherical Gaussian weights. In deep
networks, as depth increases the equivalent kernel approaches a pathological
fixed point, which can be used to argue why training randomly initialized
networks can be difficult. Our results also have implications for weight
initialization.Comment: ICML 201
Bayesian Inference in Estimation of Distribution Algorithms
Metaheuristics such as Estimation of Distribution Algorithms and the Cross-Entropy method use probabilistic modelling and inference to generate candidate solutions in optimization problems. The model fitting task in this class of algorithms has largely been carried out to date based on maximum likelihood. An alternative approach that is prevalent in statistics and machine learning is to use Bayesian inference. In this paper, we provide a framework for the application of Bayesian inference techniques in probabilistic model-based optimization. Based on this framework, a simple continuous Bayesian Estimation of Distribution Algorithm is described. We evaluate and compare this algorithm experimentally with its maximum likelihood equivalent, UMDAG c
Population-based continuous optimization, probabilistic modelling and mean shift
Evolutionary algorithms perform optimization using a population of sample solution points. An interesting development has been to view population-based optimization as the process of evolving an explicit, probabilistic model of the search space. This paper investigates a formal basis for continuous, population-based optimization in terms of a stochastic gradient descent on the Kullback-Leibler divergence between the model probability density and the objective function, represented as an unknown density of assumed form. This leads to an update rule that is related and compared with previous theoretical work, a continuous version of the population-based incremental learning algorithm, and the generalized mean shift clustering framework. Experimental results are presented that demonstrate the dynamics of the new algorithm on a set of simple test problems
GENFIRE: A generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging
Tomography has made a radical impact on diverse fields ranging from the study
of 3D atomic arrangements in matter to the study of human health in medicine.
Despite its very diverse applications, the core of tomography remains the same,
that is, a mathematical method must be implemented to reconstruct the 3D
structure of an object from a number of 2D projections. In many scientific
applications, however, the number of projections that can be measured is
limited due to geometric constraints, tolerable radiation dose and/or
acquisition speed. Thus it becomes an important problem to obtain the
best-possible reconstruction from a limited number of projections. Here, we
present the mathematical implementation of a tomographic algorithm, termed
GENeralized Fourier Iterative REconstruction (GENFIRE). By iterating between
real and reciprocal space, GENFIRE searches for a global solution that is
concurrently consistent with the measured data and general physical
constraints. The algorithm requires minimal human intervention and also
incorporates angular refinement to reduce the tilt angle error. We demonstrate
that GENFIRE can produce superior results relative to several other popular
tomographic reconstruction techniques by numerical simulations, and by
experimentally by reconstructing the 3D structure of a porous material and a
frozen-hydrated marine cyanobacterium. Equipped with a graphical user
interface, GENFIRE is freely available from our website and is expected to find
broad applications across different disciplines.Comment: 18 pages, 6 figure
Framework for software architecture visualization assessment.
In order to assess software architecture visualisation strategies, we qualitatively characterize then construct an assessment framework with 7 key areas and 31 features. The framework is used for evaluation and comparison of various strategies from multiple stakeholder perspectives. Six existing software architecture visualisation tools and a seventh research tool were evaluated. All
tools exhibited shortcomings when evaluated in the framework
Nanoscale mosaicity revealed in peptide microcrystals by scanning electron nanodiffraction.
Changes in lattice structure across sub-regions of protein crystals are challenging to assess when relying on whole crystal measurements. Because of this difficulty, macromolecular structure determination from protein micro and nanocrystals requires assumptions of bulk crystallinity and domain block substructure. Here we map lattice structure across micron size areas of cryogenically preserved three-dimensional peptide crystals using a nano-focused electron beam. This approach produces diffraction from as few as 1500 molecules in a crystal, is sensitive to crystal thickness and three-dimensional lattice orientation. Real-space maps reconstructed from unsupervised classification of diffraction patterns across a crystal reveal regions of crystal order/disorder and three-dimensional lattice tilts on the sub-100nm scale. The nanoscale lattice reorientation observed in the micron-sized peptide crystal lattices studied here provides a direct view of their plasticity. Knowledge of these features facilitates an improved understanding of peptide assemblies that could aid in the determination of structures from nano- and microcrystals by single or serial crystal electron diffraction
Modularity based linkage model for neuroevolution
Crossover between neural networks is considered disruptive due to the strong
functional dependency between connection weights. We propose a modularity-based
linkage model at the weight level to preserve functionally dependent
communities (building blocks) in neural networks during mixing. A proximity
matrix is built by estimating the dependency between weights, then a community
detection algorithm maximizing modularity is run on the graph described by such
matrix. The resulting communities/groups of parameters are considered to be
mutually independent and used as crossover masks in an optimal mixing EA. A
variant is tested with an operator that neutralizes the permutation problem of
neural networks to a degree. Experiments were performed on 8 and 10-bit parity
problems as the intrinsic hierarchical nature of the dependencies in these
problems are challenging to learn. The results show that our algorithm finds
better, more functionally dependent linkage which leads to more successful
crossover and better performance
- …
