153 research outputs found

    Color singlet suppression of quark-gluon plasma formation

    Get PDF
    The rate of quark-gluon plasma droplet nucleation in superheated hadronic matter is calculated within the MIT bag model. The requirements of color singletness and (to less extent) fixed momentum suppress the nucleation rate by many orders of magnitude, making thermal nucleation of quark-gluon plasma droplets unlikely in ultrarelativistic heavy-ion collisions if the transition is first order and reasonably described by the bag model.Comment: 9 pages, 3 ps figures. To appear in PhysRevC (April 1996

    Measurement of quasi-elastic 12C(p,2p) scattering at high momentum transfer

    Full text link
    We measured the high-momentum quasi-elastic 12C(p,2p) reaction (at center of mass angle near 90 degrees) for 6 and 7.5 GeV/c incident protons. The three-momentum components of both final state protons were measured and the missing energy and momentum of the target proton in the nucleus were determined. The validity of the quasi-elastic picture was verified up to Fermi momenta of about 450 MeV/c, where it might be questionable. Transverse and longitudinal Fermi momentum distributions of the target proton were measured and compared to independent particle models which do not reproduce the large momentum tails. We also observed that the transverse Fermi distribution gets wider as the longitudinal component increases in the beam direction, in contrast to a simple Fermi gas model.Comment: 4 pages including 3 figure

    Surface Tension at Finite Tempearture in the MIT Bag Model

    Full text link
    At T=0 T = 0 the surface tension σ1/3 \sigma ^{1/3} in the MIT bag model for a single hadron is known to be negligible as compared to the bag pressure B1/4 B^{1/4}. We show that at finite temperature it has a substantial value of 50 - 70 MeV which also differ from hadron to hadron. We also find that the dynamics of the Quark-Gluon Plasma is such that the creation of hybrids (ssˉg)(s\bar{s}g) with massive quarks will predominate over the creation of (ssˉ) (s\bar{s}) mesons.Comment: Substantial changes in the revised version and a new author included, 13 pages in Latex and one figur

    Proof of principle of a high-spatial-resolution, resonant-response gamma-ray detector for Gamma Resonance Absorption in 14N

    Full text link
    The development of a mm-spatial-resolution, resonant-response detector based on a micrometric glass capillary array filled with liquid scintillator is described. This detector was developed for Gamma Resonance Absorption (GRA) in 14N. GRA is an automatic-decision radiographic screening technique that combines high radiation penetration (the probe is a 9.17 MeV gamma ray) with very good sensitivity and specificity to nitrogenous explosives. Detailed simulation of the detector response to electrons and protons generated by the 9.17 MeV gamma-rays was followed by a proof-of-principle experiment, using a mixed gamma-ray and neutron source. Towards this, a prototype capillary detector was assembled, including the associated filling and readout systems. Simulations and experimental results indeed show that proton tracks are distinguishable from electron tracks at relevant energies, on the basis of a criterion that combines track length and light intensity per unit length.Comment: 18 pages, 16 figure

    Massless fermions in a bag at finite density and temperature

    Get PDF
    We introduce the chemical potential in a system of massless fermions in a bag by impossing boundary conditions in the Euclidean time direction. We express the fermionic mean number in terms of a functional trace involving the Green's function of the boundary value problem, which we study analytically. Numerical evaluations are made, and an application to a simple hadron model is discussed.Comment: 14 pages, 3 figures, RevTe

    Measurement of polarization-transfer to bound protons in carbon and its virtuality dependence

    Full text link
    We measured the ratio Px/PzP_{x}/P_{z} of the transverse to longitudinal components of polarization transferred from electrons to bound protons in 12C^{12}\mathrm{C} by the 12C(e,ep)^{12}\mathrm{C}(\vec{e},e'\vec{p}) process at the Mainz Microtron (MAMI). We observed consistent deviations from unity of this ratio normalized to the free-proton ratio, (Px/Pz)12C/(Px/Pz)1H(P_{x}/P_{z})_{^{12}\mathrm{C}}/(P_{x}/P_{z})_{^{1}\mathrm{H}}, for both ss- and pp-shell knocked out protons, even though they are embedded in averaged local densities that differ by about a factor of two. The dependence of the double ratio on proton virtuality is similar to the one for knocked out protons from 2H^{2}\mathrm{H} and 4He^{4}\mathrm{He}, suggesting a universal behavior. It further implies no dependence on average local nuclear density
    corecore