3,052 research outputs found
Flat Lorentz 3-Manifolds and Cocompact Fuchsian Groups
This paper gives a new proof of a result of Geoff Mess that the linear
holonomy group of a complete flat Lorentz 3-manifold cannot be cocompact in
SO(2,1). The proof uses a signed marked Lorentzian length-spectrum invariant
developed by G.Margulis, reinterpreted in terms of deformations of hyperbolic
surfaces.Comment: to appear in "Crystallographic Groups and their Generalizations II,"
Contemporary Mathematic
A topological realization of the congruence subgroup Kernel A
A number of years ago, Kumar Murty pointed out to me that the computation of
the fundamental group of a Hilbert modular surface ([7],IV,6), and the
computation of the congruence subgroup kernel of SL(2) ([6]) were surprisingly
similar. We puzzled over this, in particular over the role of elementary
matrices in both computations. We formulated a very general result on the
fundamental group of a Satake compactification of a locally symmetric space.
This lead to our joint paper [1] with Lizhen Ji and Les Saper on these
fundamental groups. Although the results in it were intriguingly similar to the
corresponding calculations of the congruence subgroup kernel of the underlying
algebraic group in [5], we were not able to demonstrate a direct connection
(cf. [1], 7). The purpose of this note is to explain such a connection. A
covering space is constructed from inverse limits of reductive Borel-Serre
compactifications. The congruence subgroup kernel then appears as the group of
deck transformations of this covering. The key to this is the computation of
the fundamental group in [1]
Feasibility of improving a priori regional climate model estimates of Greenland ice sheet surface mass loss through assimilation of measured ice surface temperatures
peer reviewedThe Greenland ice sheet (GrIS) has been the focus of climate studies due to its considerable impact on sea level rise. Accurate estimates of surface mass fluxes would contribute to understanding the cause of its recent changes and would help to better estimate the past, current and future contribution of the GrIS to sea level rise. Though the estimates of the GrIS surface mass fluxes have improved significantly over the last decade, there is still considerable disparity between the results from different methodologies (e.g., Rae et al., 2012; Vernon et al., 2013). The data assimilation approach can merge information from different methodologies in a consistent way to improve the GrIS surface mass fluxes. In this study, an ensemble batch smoother data assimilation approach was developed to assess the feasibility of generating a reanalysis estimate of the GrIS surface mass fluxes via integrating remotely sensed ice surface temperature measurements with a regional climate model (a priori) estimate. The performance of the proposed methodology for generating an improved posterior estimate was investigated within an observing system simulation experiment (OSSE) framework using synthetically generated ice surface temperature measurements. The results showed that assimilation of ice surface temperature time series were able to overcome uncertainties in near-surface meteorological forcing variables that drive the GrIS surface processes. Our findings show that the proposed methodology is able to generate posterior reanalysis estimates of the surface mass fluxes that are in good agreement with the synthetic true estimates. The results also showed that the proposed data assimilation framework improves the root-mean-square error of the posterior estimates of runoff, sublimation/evaporation, surface condensation, and surface mass loss fluxes by 61, 64, 76, and 62 %, respectively, over the nominal a priori climate model estimates
Stochastic make-to-stock inventory deployment problem: an endosymbiotic psychoclonal algorithm based approach
Integrated steel manufacturers (ISMs) have no specific product, they just produce finished product from the ore. This enhances the uncertainty prevailing in the ISM regarding the nature of the finished product and significant demand by customers. At present low cost mini-mills are giving firm competition to ISMs in terms of cost, and this has compelled the ISM industry to target customers who want exotic products and faster reliable deliveries. To meet this objective, ISMs are exploring the option of satisfying part of their demand by converting strategically placed products, this helps in increasing the variability of product produced by the ISM in a short lead time. In this paper the authors have proposed a new hybrid evolutionary algorithm named endosymbiotic-psychoclonal (ESPC) to decide what and how much to stock as a semi-product in inventory. In the proposed theory, the ability of previously proposed psychoclonal algorithms to exploit the search space has been increased by making antibodies and antigen more co-operative interacting species. The efficacy of the proposed algorithm has been tested on randomly generated datasets and the results compared with other evolutionary algorithms such as genetic algorithms (GA) and simulated annealing (SA). The comparison of ESPC with GA and SA proves the superiority of the proposed algorithm both in terms of quality of the solution obtained and convergence time required to reach the optimal/near optimal value of the solution
Spin-orbit interaction and spin relaxation in a two-dimensional electron gas
Using time-resolved Faraday rotation, the drift-induced spin-orbit Field of a
two-dimensional electron gas in an InGaAs quantum well is measured. Including
measurements of the electron mobility, the Dresselhaus and Rashba coefficients
are determined as a function of temperature between 10 and 80 K. By comparing
the relative size of these terms with a measured in-plane anisotropy of the
spin dephasing rate, the D'yakonv-Perel' contribution to spin dephasing is
estimated. The measured dephasing rate is significantly larger than this, which
can only partially be explained by an inhomogeneous g-factor.Comment: 6 pages, 5 figure
Recommended from our members
Directional Force Measurement Using Specialized Single-Mode Polarization-Maintaining Fibers
Two different types of specialist single-mode polarization-maintaining side-hole(s) fibers have been specifically chosen in this paper for the direct measurement of transverse force, and their performance characteristics have been recorded and cross compared. To achieve this, side-hole fibers have been used which were investigated both theoretically and experimentally for their respective pressure sensitivities as a function of rotation angles and magnitudes of the applied external force. The experimental results obtained have shown good agreement with theoretical predictions for situations where an external force applied was within a certain range. It was thus concluded that the pressure measurement sensitivities of these specialist fibers are strongly dependent upon the direction of the force applied (with reference to the fast or slow axis of the fibers). Therefore, devices based on these fibers can be used effectively as sensors for the measurement of pressure, force, and mass of an object through an appropriate device configuration, enabling measurements over a wide range and in real time
Fano resonances in a three-terminal nanodevice
The electron transport through a quantum sphere with three one-dimensional
wires attached to it is investigated. An explicit form for the transmission
coefficient as a function of the electron energy is found from the first
principles. The asymmetric Fano resonances are detected in transmission of the
system. The collapse of the resonances is shown to appear under certain
conditions. A two-terminal nanodevice with an additional gate lead is studied
using the developed approach. Additional resonances and minima of transmission
are indicated in the device.Comment: 11 pages, 5 figures, 2 equations are added, misprints in 5 equations
are removed, published in Journal of Physics: Condensed Matte
- …
