241 research outputs found

    Effects of pH, lactate, hematocrit and potassium level on the accuracy of continuous glucose monitoring (CGM) in pediatric intensive care unit

    Get PDF
    BACKGROUND: Continuous glucose monitoring (CGM) originally was developed for diabetic patients and it may be a useful tool for monitoring glucose changes in pediatric intensive care unit (PICU). Its use is, however, limited by the lack of sufficient data on its reliability at insufficient peripheral perfusion. We aimed to correlate the accuracy of CGM with laboratory markers relevant to disturbed tissue perfusion. PATIENTS AND METHODS: In 38 pediatric patients (age range, 0–18 years) requiring intensive care we tested the effect of pH, lactate, hematocrit and serum potassium on the difference between CGM and meter glucose measurements. Guardian® (Medtronic®) CGM results were compared to GEM 3000 (Instrumentation laboratory®) and point-of-care measurements. The clinical accuracy of CGM was evaluated by Clarke Error Grid -, Bland-Altman analysis and Pearson’s correlation. We used Friedman test for statistical analysis (statistical significance was established as a p < 0.05). RESULTS: CGM values exhibited a considerable variability without any correlation with the examined laboratory parameters. Clarke, Bland-Altman analysis and Pearson’s correlation coefficient demonstrated a good clinical accuracy of CGM (zone A and B = 96%; the mean difference between reference and CGM glucose was 1,3 mg/dL, 48 from the 780 calibration pairs overrunning the 2 standard deviation; Pearson’s correlation coefficient: 0.83). CONCLUSIONS: The accuracy of CGM measurements is independent of laboratory parameters relevant to tissue hypoperfusion. CGM may prove a reliable tool for continuous monitoring of glucose changes in PICUs, not much influenced by tissue perfusion, but still not appropriate for being the base for clinical decisions

    Evaluation of an open access software for calculating glucose variability parameters of a continuous glucose monitoring system applied at pediatric intensive care unit.

    Get PDF
    BACKGROUND: Continuous Glucose Monitoring (CGM) has become an increasingly investigated tool, especially with regards to monitoring of diabetic and critical care patients. The continuous glucose data allows the calculation of several glucose variability parameters, however, without specific application the interpretation of the results is time-consuming, utilizing extreme efforts. Our aim was to create an open access software [Glycemic Variability Analyzer Program (GVAP)], readily available to calculate the most common parameters of the glucose variability and to test its usability. METHODS: The GVAP was developed in MATLAB(R) 2010b environment. The calculated parameters were the following: average area above/below the target range (Avg. AUC-H/L); Percentage Spent Above/Below the Target Range (PATR/PBTR); Continuous Overall Net Glycemic Action (CONGA); Mean of Daily Differences (MODD); Mean Amplitude of Glycemic Excursions (MAGE). For verification purposes we selected 14 CGM curves of pediatric critical care patients. Medtronic(R) Guardian(R) Real-Time with Enlite(R) sensor was used. The reference values were obtained from Medtronic(R)'s own software for Avg. AUC-H/L and PATR/PBTR, from GlyCulator for MODD and CONGA, and using manual calculation for MAGE. RESULTS: The Pearson and Spearman correlation coefficients were above 0.99 for all parameters. The initial execution took 30 minutes, for further analysis with the Windows(R) Standalone Application approximately 1 minute was needed. CONCLUSIONS: The GVAP is a reliable open access program for analyzing different glycemic variability parameters, hence it could be a useful tool for the study of glycemic control among critically ill patients

    Prevalence and etiology of false normal aEEG recordings in neonatal hypoxic-ischaemic encephalopathy.

    Get PDF
    BACKGROUND: Amplitude-integrated electroencephalography (aEEG) is a useful tool to determine the severity of neonatal hypoxic-ischemic encephalopathy (HIE). Our aim was to assess the prevalence and study the origin of false normal aEEG recordings based on 85 aEEG recordings registered before six hours of age. METHODS: Raw EEG recordings were reevaluated retrospectively with Fourier analysis to identify and describe the frequency patterns of the raw EEG signal, in cases with inconsistent aEEG recordings and clinical symptoms. Power spectral density curves, power (P) and median frequency (MF) were determined using the raw EEG. In 7 patients non-depolarizing muscle relaxant (NDMR) exposure was found. The EEG sections were analyzed and compared before and after NDMR administration. RESULTS: The reevaluation found that the aEEG was truly normal in 4 neonates. In 3 neonates, high voltage electrocardiographic (ECG) artifacts were found with flat trace on raw EEG. High frequency component (HFC) was found as a cause of normal appearing aEEG in 10 neonates. HFC disappeared while P and MF decreased significantly upon NDMR administration in each observed case. CONCLUSION: Occurrence of false normal aEEG background pattern is relatively high in neonates with HIE and hypothermia. High frequency EEG artifacts suggestive of shivering were found to be the most common cause of false normal aEEG in hypothermic neonates while high voltage ECG artifacts are less common

    Loss of bhlha9 Impairs Thermotaxis and Formalin-Evoked Pain in a Sexually Dimorphic Manner

    Get PDF
    International audienceC-LTMRs are known to convey affective aspects of touch and to modulate injury-induced pain in humans and mice. However, a role for these neurons in temperature sensation has been suggested, but not fully demonstrated. Here, we report that deletion of C-low-threshold mechanoreceptor (C-LTMR)-expressed bhlha9 causes impaired thermotaxis behavior and exacerbated formalin-evoked pain in male, but not female, mice. Positive modulators of GABAA receptors failed to relieve inflammatory formalin pain and failed to decrease the frequency of spontaneous excitatory post-synaptic currents (sEPSCs) selectively in bhlha9 knockout (KO) males. This could be explained by a drastic change in the GABA content of lamina II inner inhibitory interneurons contacting C-LTMR central terminals. Finally, C-LTMR-specific deep RNA sequencing revealed more genes differentially expressed in male than in female bhlha9 KO C-LTMRs. Our data consolidate the role of C-LTMRs in modulation of formalin pain and provide in vivo evidence of their role in the discriminative aspects of temperature sensation

    Az ICON elektromos kardiometrián alapuló nem invazív hemodinamikai monitor használata a klinikumban

    Get PDF
    Absztrakt: A kritikus állapotú betegek kezelésében elengedhetetlen fontosságú a hemodinamikai monitorozás. Az utóbbi években az intenzív osztályos ellátás a technika fejlődésének köszönhetően ezen a területen is egyre inkább a nem invazív irányt követi. A néhány évtizeddel ezelőtt rutinszerűen bevezetett invazív hemodinamikai monitorozás használata a gyermek intenzív, valamint egyre több helyen a felnőtt intenzív ellátásban is csökkenő tendenciát mutat. A nem invazív monitorozás elterjedésének oka a biztonságossága, szövődménymentessége mellett a költséghatékonysága is. Összefoglalónk témája az elektromos kardiometrián (electric cardiometry) alapuló ICON® betegmonitor ismertetése, amely egy újonnan kifejlesztett nem invazív, hemodinamikai paramétereket mérő és regisztráló eszköz. Klinikai alkalmazhatósága kiterjed a csecsemő-, gyermek- és felnőttosztályos gyakorlatra is. Az ICON® elektromos kardiometriai monitor működési elve egyszerű: az aortában a vér vezetőképessége az idő függvényében változást mutat, az aortabillentyű nyitása előtt a vörösvérsejtek random elhelyezkedést mutatnak, míg kamrai kontrakció hatására párhuzamos irányultságot vesznek fel. Négy elektróda felhelyezését követően az eszköz a két állapot közti vezetőképesség-változást rögzíti, majd a kapott értékekből a perctérfogatot és a verőtérfogatot méri, valamint más cardiovascularis paramétereket (például szisztémás vascularis rezisztencia) számol a mellkasi elektromos bioimpedancia szívciklushoz kapcsolódó változásainak követésével. Az ICON® legfontosabb előnyei az azonnali és folyamatos mérési lehetőség, illetve a nem invazivitásból fakadó alacsony szövődményráta. Az ICON® új, ígéretes hemodinamikai eszköz az intenzív terápia területén. A nem invazív, valós idejű mérési módszerrel szinte azonnal felmérhető a betegek hemodinamikai statusa, így az optimális terápia indítása késlekedés nélkül elkezdhető. A pontosabb klinikai indikációk meghatározásához további kutatások folyamatban vannak. Orv Hetil. 2018; 159(44): 1775–1781. | Abstract: Establishment of a proper hemodynamic monitoring system in order to achieve optimal care among critically ill patients is fundamental. In contrast to invasive patient-checking systems, which were introduced decades ago and used in both adult and pediatric intensive care, the non-invasive methods have become more popular in recent years due to technical advancements in intensive care and patient monitoring. This increase in popularity can be attributed to the higher degree of safety and reduced complication rates as well as to its being more economical. Our summary focuses on the ICON® patient monitoring system. This newly engineered, non-invasive tool is based on electrical cardiometry, and uses hemodynamic parameters in both neonatal and pediatric care as well as in adults. The operating principle is simple: the conductivity of the blood in the aorta shows time-dependent changes. Prior to the opening of the aortic valve, the orientation of the red blood cells (RBCs) is random, and it is not until the contraction of the aorta that the RBCs and the opening of the aortic valve achieve a parallel position. The tool senses the conductivity between four placed electrodes, and measures the stroke volume (SV) and cardiac output (CO), before calculating other additional parameters (eg.: systemic vascular resistance) by tracing the variation of bioimpedance according to changes in the heart cycle. The most important advantages of ICON® are the measurements that are made available immediately as well as continuously, and the low complication rate that originates from its non-invasive operation. ICON® is a new, promising hemodynamic device in the tool belt of intensive care. Due to the nature of the device, it is possible to evaluate the status of the patient on a continuous basis, allowing for optimal care. To identify the more accurate clinical indications further measures will be necessary. Orv Hetil. 2018; 159(44): 1775–1781

    Analysis of the Fibroblast Growth Factor System Reveals Alterations in a Mouse Model of Spinal Muscular Atrophy

    Get PDF
    The monogenetic disease Spinal Muscular Atrophy (SMA) is characterized by a progressive loss of motoneurons leading to muscle weakness and atrophy due to severe reduction of the Survival of Motoneuron (SMN) protein. Several models of SMA show deficits in neurite outgrowth and maintenance of neuromuscular junction (NMJ) structure. Survival of motoneurons, axonal outgrowth and formation of NMJ is controlled by neurotrophic factors such as the Fibroblast Growth Factor (FGF) system. Besides their classical role as extracellular ligands, some FGFs exert also intracellular functions controlling neuronal differentiation. We have previously shown that intracellular FGF-2 binds to SMN and regulates the number of a subtype of nuclear bodies which are reduced in SMA patients. In the light of these findings, we systematically analyzed the FGF-system comprising five canonical receptors and 22 ligands in a severe mouse model of SMA. In this study, we demonstrate widespread alterations of the FGF-system in both muscle and spinal cord. Importantly, FGF-receptor 1 is upregulated in spinal cord at a pre-symptomatic stage as well as in a mouse motoneuron-like cell-line NSC34 based model of SMA. Consistent with that, phosphorylations of FGFR-downstream targets Akt and ERK are increased. Moreover, ERK hyper-phosphorylation is functionally linked to FGFR-1 as revealed by receptor inhibition experiments. Our study shows that the FGF system is dysregulated at an early stage in SMA and may contribute to the SMA pathogenesis
    corecore