4,480 research outputs found
Emotions and Digital Well-being. The rationalistic bias of social media design in online deliberations
In this chapter we argue that emotions are mediated in an incomplete way in online social media because of the heavy reliance on textual messages which fosters a rationalistic bias and an inclination towards less nuanced emotional expressions. This incompleteness can happen either by obscuring emotions, showing less than the original intensity, misinterpreting emotions, or eliciting emotions without feedback and context. Online interactions and deliberations tend to contribute rather than overcome stalemates and informational bubbles, partially due to prevalence of anti-social emotions. It is tempting to see emotions as being the cause of the problem of online verbal aggression and bullying. However, we argue that social media are actually designed in a predominantly rationalistic way, because of the reliance on text-based communication, thereby filtering out social emotions and leaving space for easily expressed antisocial emotions. Based on research on emotions that sees these as key ingredients to moral interaction and deliberation, as well as on research on text-based versus non-verbal communication, we propose a richer understanding of emotions, requiring different designs of online deliberation platforms. We propose that such designs should move from text-centred designs and should find ways to incorporate the complete expression of the full range of human emotions so that these can play a constructive role in online deliberations
Hsp70 and Hsp40 inhibit an inter-domain interaction necessary for transcriptional activity in the androgen receptor.
Molecular chaperones such as Hsp40 and Hsp70 hold the androgen receptor (AR) in an inactive conformation. They are released in the presence of androgens, enabling transactivation and causing the receptor to become aggregation-prone. Here we show that these molecular chaperones recognize a region of the AR N-terminal domain (NTD), including a FQNLF motif, that interacts with the AR ligand-binding domain (LBD) upon activation. This suggests that competition between molecular chaperones and the LBD for the FQNLF motif regulates AR activation. We also show that, while the free NTD oligomerizes, binding to Hsp70 increases its solubility. Stabilizing the NTD-Hsp70 interaction with small molecules reduces AR aggregation and promotes its degradation in cellular and mouse models of the neuromuscular disorder spinal bulbar muscular atrophy. These results help resolve the mechanisms by which molecular chaperones regulate the balance between AR aggregation, activation and quality control
Topological Photonics
Topology is revolutionizing photonics, bringing with it new theoretical
discoveries and a wealth of potential applications. This field was inspired by
the discovery of topological insulators, in which interfacial electrons
transport without dissipation even in the presence of impurities. Similarly,
new optical mirrors of different wave-vector space topologies have been
constructed to support new states of light propagating at their interfaces.
These novel waveguides allow light to flow around large imperfections without
back-reflection. The present review explains the underlying principles and
highlights the major findings in photonic crystals, coupled resonators,
metamaterials and quasicrystals.Comment: progress and review of an emerging field, 12 pages, 6 figures and 1
tabl
VEZF1 elements mediate protection from DNA methylation
There is growing consensus that genome organization and long-range gene regulation involves partitioning of the genome into domains of distinct epigenetic chromatin states. Chromatin insulator or barrier elements are key components of these processes as they can establish boundaries between chromatin states. The ability of elements such as the paradigm β-globin HS4 insulator to block the range of enhancers or the spread of repressive histone modifications is well established. Here we have addressed the hypothesis that a barrier element in vertebrates should be capable of defending a gene from silencing by DNA methylation. Using an established stable reporter gene system, we find that HS4 acts specifically to protect a gene promoter from de novo DNA methylation. Notably, protection from methylation can occur in the absence of histone acetylation or transcription. There is a division of labor at HS4; the sequences that mediate protection from methylation are separable from those that mediate CTCF-dependent enhancer blocking and USF-dependent histone modification recruitment. The zinc finger protein VEZF1 was purified as the factor that specifically interacts with the methylation protection elements. VEZF1 is a candidate CpG island protection factor as the G-rich sequences bound by VEZF1 are frequently found at CpG island promoters. Indeed, we show that VEZF1 elements are sufficient to mediate demethylation and protection of the APRT CpG island promoter from DNA methylation. We propose that many barrier elements in vertebrates will prevent DNA methylation in addition to blocking the propagation of repressive histone modifications, as either process is sufficient to direct the establishment of an epigenetically stable silent chromatin stat
Spawning rings of exceptional points out of Dirac cones
The Dirac cone underlies many unique electronic properties of graphene and
topological insulators, and its band structure--two conical bands touching at a
single point--has also been realized for photons in waveguide arrays, atoms in
optical lattices, and through accidental degeneracy. Deformations of the Dirac
cone often reveal intriguing properties; an example is the quantum Hall effect,
where a constant magnetic field breaks the Dirac cone into isolated Landau
levels. A seemingly unrelated phenomenon is the exceptional point, also known
as the parity-time symmetry breaking point, where two resonances coincide in
both their positions and widths. Exceptional points lead to counter-intuitive
phenomena such as loss-induced transparency, unidirectional transmission or
reflection, and lasers with reversed pump dependence or single-mode operation.
These two fields of research are in fact connected: here we discover the
ability of a Dirac cone to evolve into a ring of exceptional points, which we
call an "exceptional ring." We experimentally demonstrate this concept in a
photonic crystal slab. Angle-resolved reflection measurements of the photonic
crystal slab reveal that the peaks of reflectivity follow the conical band
structure of a Dirac cone from accidental degeneracy, whereas the complex
eigenvalues of the system are deformed into a two-dimensional flat band
enclosed by an exceptional ring. This deformation arises from the dissimilar
radiation rates of dipole and quadrupole resonances, which play a role
analogous to the loss and gain in parity-time symmetric systems. Our results
indicate that the radiation that exists in any open system can fundamentally
alter its physical properties in ways previously expected only in the presence
of material loss and gain
Evidence for an Excess of Soft Photons in Hadronic Decays of Z^0
Soft photons inside hadronic jets converted in front of the DELPHI main
tracker (TPC) in events of qqbar disintegrations of the Z^0 were studied in the
kinematic range 0.2 < E_gamma < 1 GeV and transverse momentum with respect to
the closest jet direction p_T < 80 MeV/c. A clear excess of photons in the
experimental data as compared to the Monte Carlo predictions is observed. This
excess (uncorrected for the photon detection efficiency) is (1.17 +/- 0.06 +/-
0.27) x 10^{-3} gamma/jet in the specified kinematic region, while the expected
level of the inner hadronic bremsstrahlung (which is not included in the Monte
Carlo) is (0.340 +/- 0.001 +/- 0.038) x 10^{-3} gamma/jet. The ratio of the
excess to the predicted bremsstrahlung rate is then (3.4 +/- 0.2 +/- 0.8),
which is similar in strength to the anomalous soft photon signal observed in
fixed target experiments with hadronic beams.Comment: 37 pages, 9 figures, Accepted by Eur. Phys. J.
Practical and clinical utility of non-invasive vagus nerve stimulation (nVNS) for the acute treatment of migraine. A post hoc analysis of the randomized, sham-controlled, double-blind PRESTO trial
Background: The PRESTO study of non-invasive vagus nerve stimulation (nVNS; gammaCore®) featured key primary and secondary end points recommended by the International Headache Society to provide Class I evidence that for patients with an episodic migraine, nVNS significantly increases the probability of having mild pain or being pain-free 2 h post stimulation. Here, we examined additional data from PRESTO to provide further insights into the practical utility of nVNS by evaluating its ability to consistently deliver clinically meaningful improvements in pain intensity while reducing the need for rescue medication. Methods: Patients recorded pain intensity for treated migraine attacks on a 4-point scale. Data were examined to compare nVNS and sham with regard to the percentage of patients who benefited by at least 1 point in pain intensity. We also assessed the percentage of attacks that required rescue medication and pain-free rates stratified by pain intensity at treatment initiation. Results: A significantly higher percentage of patients who used acute nVNS treatment (n = 120) vs sham (n = 123) reported a ≥ 1-point decrease in pain intensity at 30 min (nVNS, 32.2%; sham, 18.5%; P = 0.020), 60 min (nVNS, 38.8%; sham, 24.0%; P = 0.017), and 120 min (nVNS, 46.8%; sham, 26.2%; P = 0.002) after the first attack. Similar significant results were seen when assessing the benefit in all attacks. The proportion of patients who did not require rescue medication was significantly higher with nVNS than with sham for the first attack (nVNS, 59.3%; sham, 41.9%; P = 0.013) and all attacks (nVNS, 52.3%; sham, 37.3%; P = 0.008). When initial pain intensity was mild, the percentage of patients with no pain after treatment was significantly higher with nVNS than with sham at 60 min (all attacks: nVNS, 37.0%; sham, 21.2%; P = 0.025) and 120 min (first attack: nVNS, 50.0%; sham, 25.0%; P = 0.018; all attacks: nVNS, 46.7%; sham, 30.1%; P = 0.037). Conclusions: This post hoc analysis demonstrated that acute nVNS treatment quickly and consistently reduced pain intensity while decreasing rescue medication use. These clinical benefits provide guidance in the optimal use of nVNS in everyday practice, which can potentially reduce use of acute pharmacologic medications and their associated adverse events. Trial registration: ClinicalTrials.gov identifier: NCT02686034
Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo
We use data from the second science run of the LIGO gravitational-wave
detectors to search for the gravitational waves from primordial black hole
(PBH) binary coalescence with component masses in the range 0.2--.
The analysis requires a signal to be found in the data from both LIGO
observatories, according to a set of coincidence criteria. No inspiral signals
were found. Assuming a spherical halo with core radius 5 kpc extending to 50
kpc containing non-spinning black holes with masses in the range 0.2--, we place an observational upper limit on the rate of PBH coalescence
of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.
Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV
A measurement of the production cross-section for top quark pairs(\ttbar)
in collisions at \sqrt{s}=7 \TeV is presented using data recorded with
the ATLAS detector at the Large Hadron Collider. Events are selected in two
different topologies: single lepton (electron or muon ) with large
missing transverse energy and at least four jets, and dilepton (,
or ) with large missing transverse energy and at least two jets. In a
data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton
topology and 9 events in the dilepton topology. The corresponding expected
backgrounds from non-\ttbar Standard Model processes are estimated using
data-driven methods and determined to be events and events, respectively. The kinematic properties of the selected events are
consistent with SM \ttbar production. The inclusive top quark pair production
cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where
the first uncertainty is statistical and the second systematic. The measurement
agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables,
CERN-PH number and final journal adde
- …
