75 research outputs found
Attention demanding tasks during treadmill walking reduce step width variability in young adults
BACKGROUND: The variability of step time and step width is associated with falls by older adults. Further, step time is significantly influenced when performing attention demanding tasks while walking. Without exception, step time variability has been reported to increase in normal and pathologically aging older adults. Because of the role of step width in managing frontal plane dynamic stability, documenting the influence of attention-demanding tasks on step width variability may provide insight to events that can disturb dynamic stability during locomotion and increase fall risk. Preliminary evidence suggests performance of an attention demanding task significantly decreases step width variability of young adults walking on a treadmill. The purpose of the present study was to confirm or refute this finding by characterizing the extent and direction of the effects of a widely used attention demanding task (Stroop test) on the step width variability of young adults walking on a motorized treadmill. METHODS: Fifteen healthy young adults walked on a motorized treadmill at a self-selected velocity for 10 minutes under two conditions; without performing an attention demanding task and while performing the Stroop test. Step width of continuous and consecutive steps during the collection was derived from the data recorded using a motion capture system. Step width variability was computed as the standard deviation of all recorded steps. RESULTS: Step width decreased four percent during performance of the Stroop test but the effect was not significant (p = 0.10). In contrast, the 16 percent decrease in step width variability during the Stroop test condition was significant (p = 0.029). CONCLUSION: The results support those of our previous work in which a different attention demanding task also decreased step width variability of young subjects while walking on a treadmill. The decreased step width variability observed while performing an attention demanding task during treadmill walking may reflect a voluntary gait adaptation toward a more conservative gait pattern emphasizing frontal plane control of the trunk. Extension of the experimental paradigm to older adults and mechanistic approaches to link step width variability to dynamic stability, and falls, in a cause-effect manner are necessary
Effects of an attention demanding task on dynamic stability during treadmill walking
<p>Abstract</p> <p>Background</p> <p>People exhibit increased difficulty balancing when they perform secondary attention-distracting tasks while walking. However, a previous study by Grabiner and Troy (<it>J. Neuroengineering Rehabil</it>., 2005) found that young healthy subjects performing a concurrent Stroop task while walking on a motorized treadmill exhibited <it>decreased </it>step width variability. However, measures of variability do not directly quantify how a system responds to perturbations. This study re-analyzed data from Grabiner and Troy 2005 to determine if performing the concurrent Stroop task directly affected the dynamic stability of walking in these same subjects.</p> <p>Methods</p> <p>Thirteen healthy volunteers walked on a motorized treadmill at their self-selected constant speed for 10 minutes both while performing the Stroop test and during undisturbed walking. This Stroop test consisted of projecting images of the name of one color, printed in text of a different color, onto a wall and asking subjects to verbally identify the color of the text. Three-dimensional motions of a marker attached to the base of the neck (C5/T1) were recorded. Marker velocities were calculated over 3 equal intervals of 200 sec each in each direction. Mean variability was calculated for each time series as the average standard deviation across all strides. Both "local" and "orbital" dynamic stability were quantified for each time series using previously established methods. These measures directly quantify how quickly small perturbations grow or decay, either continuously in real time (local) or discretely from one cycle to the next (orbital). Differences between Stroop and Control trials were evaluated using a 2-factor repeated measures ANOVA.</p> <p>Results</p> <p>Mean variability of trunk movements was significantly reduced during the Stroop tests compared to normal walking. Conversely, local and orbital stability results were mixed: some measures showed slight increases, while others showed slight decreases. In many cases, different subjects responded differently to the Stroop test. While some of our comparisons reached statistical significance, many did not. In general, measures of variability and dynamic stability reflected different properties of walking dynamics, consistent with previous findings.</p> <p>Conclusion</p> <p>These findings demonstrate that the decreased movement variability associated with the Stroop task did <it>not </it>translate to greater dynamic stability.</p
Dialogue: Comment on “Effects of Grip and Forearm Position on Flexed-Arm Hang Performance”
Developing and Establishing Biomechanical Variables as Risk Biomarkers for Preventable Gait-Related Falls and Assessment of Intervention Effectiveness
The purpose of this review is to position the emerging clinical promise of validating and implementing biomechanical biomarkers of falls in fall prevention interventions. The review is framed in the desirability of blunting the effects of the rapidly growing population of older adults with regard to the number of falls, their related injuries, and health care costs. We propose that biomechanical risk biomarkers may be derived from systematic study of the responses to treadmill-delivered perturbations to both identify individuals with a risk of specific types of falls, such as trips and slips as well as quantifying the effectiveness of interventions designed to reduce that risk. The review follows the evidence derived using a specific public health approach and the published biomedical literature that supports trunk kinematics as a biomarker as having met many of the criteria for a biomarker for trip-specific falls. Whereas, the efficacy of perturbation training to reduce slip-related falls by older adults appears to have been confirmed, its effectiveness presently remains an open and important question. There is a dearth of data related to the efficacy and effectiveness of perturbation training to reduce falls to the side falls by older adults. At present, efforts to characterize the extent to which perturbation training can reduce falls and translate the approaches to the clinic represents an important research opportunity.</jats:p
Utilizing Increased Resistance to Motion and Progressive Pacing Training Techniques to Increase Karate Strike Velocity
Increased resistance to motion and progressive pacing were examined relative to their effect on the execution of a forward middle punch karate strike (movement time). It was expected that both training methods would increase striking velocity. The method of utilizing increased resistance to motion would prove superior to the one which did not utilize additional resistance if increased strength would provide greater force, and thereby allow the inertia of the striking segments to be overcome within a shorter time. The results for 42 college students did not support the hypotheses as there was no perceivable difference in striking velocity for the two experimental groups or the control group who received no treatment. </jats:p
- …
