3,146 research outputs found
Infrared spectrum and stability of a π-type hydrogen-bonded complex between the OH and C2H2 reactants
A hydrogen-bonded complex between the hydroxyl radical and acetylene has been stabilized in the reactant channel well leading to the addition reaction and characterized by infrared action spectroscopy in the OH overtone region. Analysis of the rotational band structure associated with the a-type transition observed at 6885.53(1) cm−1 (origin) reveals a T-shaped structure with a 3.327(5) Å separation between the centers of mass of the monomer constituents. The OH (v = 1) product states populated following vibrational predissociation show that dissociation proceeds by two mechanisms: intramolecular vibrational to rotational energy transfer and intermolecular vibrational energy transfer. The highest observed OH product state establishes an upper limit of 956 cm−1 for the stability of the π-type hydrogen-bonded complex. The experimental results are in good accord with the intermolecular distance and well depth at the T-shaped minimum energy configuration obtained from complementary ab initio calculations, which were carried out at the restricted coupled cluster singles, doubles, noniterative triples level of theory with extrapolation to the complete basis set limit
Evidence for partial quenching of orbital angular momentum upon complex formation in the infrared spectrum of OH-acetylene
The entrance channel leading to the addition reaction between the hydroxyl radical and acetylene has been examined by spectroscopic characterization of the asymmetric CH stretching band of the π-hydrogen bonded OH-acetylene reactant complex. The infrared action spectrum observed at 3278.6 cm−1 (origin) consists of seven peaks of various intensities and widths, and is very different from those previously reported for closed-shell HF/HCl-acetylene complexes. The unusual spectrum arises from a partial quenching of the OH orbital angular momentum in the complex, which in turn is caused by a significant splitting of the OH monomer orbital degeneracy into 2A′ and 2A″ electronic states. The magnitude of the 2A′−2A″ splitting as well as the A rotational constant for the OH-acetylene complex are determined from the analysis of this b-type infrared band. The most populated OH product rotational state, jOH = 9/2, is consistent with intramolecular vibrational energy transfer to the ν2 C≡C stretching mode of the departing acetylene fragment. The lifting of the OH orbital degeneracy and partial quenching of its electronic orbital angular momentum indicate that the electronic changes accompanying the evolution of reactants into products have begun to occur in the reactant complex
RETROCAM: A Versatile Optical Imager for Synoptic Studies
We present RETROCAM, an auxiliary CCD camera that can be rapidly inserted
into the optical beam of the MDM 2.4m telescope. The speed and ease of
reconfiguring the telescope to use the imager and a straightforward user
interface permit the camera to be used during the course of other observing
programs. This in turn encourages RETROCAM's use for a variety of monitoring
projects.Comment: 6 pages, 6 figures, Accepted by A
Quasar Proper Motions and Low-Frequency Gravitational Waves
We report observational upper limits on the mass-energy of the cosmological
gravitational-wave background, from limits on proper motions of quasars.
Gravitational waves with periods longer than the time span of observations
produce a simple pattern of apparent proper motions over the sky, composed
primarily of second-order transverse vector spherical harmonics. A fit of such
harmonics to measured motions yields a 95%-confidence limit on the mass-energy
of gravitational waves with frequencies <2e-9 Hz, of <0.11/h*h times the
closure density of the universe.Comment: 15 pages, 1 figure. Also available at
http://charm.physics.ucsb.edu:80/people/cgwinn/cgwinn_group/index.htm
AXAF VETA-I mirror encircled energy measurements and data reduction
The AXAF VETA-I mirror encircled energy was measured with a series of apertures and two flow gas proportional counters at five X-ray energies ranging from 0.28 to 2.3 keV. The proportional counter has a thin plastic window with an opaque wire mesh supporting grid. Depending on the counter position, this mesh can cause the X-ray transmission to vary as much as +/-9 percent, which directly translates into an error in the encircled energy. In order to correct this wire mesh effect, window scan measurements were made, in which the counter was scanned in both horizontal (Y) and vertical (Z) directions with the aperture fixed. Post VETA measurement of the VXDS setup were made to determine the exact geometry and position of the mesh grid. Computer models of the window mesh were developed to simulate the X-ray transmission based on this measurement. The window scan data were fitted to such mesh models and corrections were made. After this study, the mesh effect was well understood and the final results of the encircled energy were obtained with an uncertainty of less than 0.8 percent
Partnership for the Revitalization of National Wind Tunnel Force Measurement Capability
Lack of funding and lack of focus on research over the past several years, coupled with force measurement capabilities being decentralized and distributed across the National Aeronautics and Space Administration (NASA) research centers, has resulted in a significant erosion of (1) capability and infrastructure to produce and calibrate force measurement systems; (2) NASA s working knowledge of those systems; and (3) the quantity of high-quality, full-capability force measurement systems available for use in aeronautics testing. Simultaneously, and at proportional rates, the capability of industry to design, manufacture, and calibrate these test instruments has been eroding primarily because of a lack of investment by the aeronautics community. Technical expertise in this technology area is a core competency in aeronautics testing; it is highly specialized and experience-based, and it represents a niche market for only a few small precision instrument shops in the United States. With this backdrop, NASA s Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the problem, focusing specifically on strain- gage balances. The team partnered with the U.S. Air Force s Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem. This paper describes the team s approach, its findings, and its recommendations, and the current status for revitalizing the government s balance capability with respect to designing, fabricating, calibrating, and using the instruments
Active Temporal Multiplexing of Photons
Photonic qubits constitute a leading platform to disruptive quantum
technologies due to their unique low-noise properties. The cost of the photonic
approach is the non-deterministic nature of many of the processes, including
single-photon generation, which arises from parametric sources and negligible
interaction between photons. Active temporal multiplexing - repeating a
generation process in time and rerouting to single modes using an optical
switching network - is a promising approach to overcome this challenge and will
likely be essential for large-scale applications with greatly reduced resource
complexity and system sizes. Requirements include the precise synchronization
of a system of low-loss switches, delay lines, fast photon detectors, and
feed-forward. Here we demonstrate temporal multiplexing of 8 'bins' from a
double-passed heralded photon source and observe an increase in the heralding
and heralded photon rates. This system points the way to harnessing temporal
multiplexing in quantum technologies, from single-photon sources to large-scale
computation.Comment: Minor revision
- …
