2,890 research outputs found
Device and Method for Continuously Equalizing the Charge State of Lithium Ion Battery Cells
A method of equalizing charge states of individual cells in a battery includes measuring a previous cell voltage for each cell, measuring a previous shunt current for each cell, calculating, based on the previous cell voltage and the previous shunt current, an adjusted cell voltage for each cell, determining a lowest adjusted cell voltage from among the calculated adjusted cell voltages, and calculating a new shunt current for each cell
Association of Air Pollution with Increased Incidence of Ventricular Tachyarrhythmias Recorded by Implanted Cardioverter Defibrillators
Epidemiologic studies have demonstrated a consistent link between sudden cardiac deaths and particulate air pollution. We used implanted cardioverter defibrillator (ICD) records of ventricular tachyarrhythmias to assess the role of air pollution as a trigger of these potentially life-threatening events. The study cohort consisted of 203 cardiac patients with ICD devices in the Boston metropolitan area who were followed for an average of 3.1 years between 1995 and 2002. Fine particle mass and gaseous air pollution plus temperature and relative humidity were measured on almost all days, and black carbon, sulfate, and particle number on a subset of days. Date, time, and intracardiac electrograms of ICD-detected arrhythmias were downloaded at the patients’ regular follow-up visits (about every 3 months). Ventricular tachyarrhythmias were identified by electrophysiologist review. Risk of ventricular arrhythmias associated with air pollution was estimated with logistic regression, adjusting for season, temperature, relative humidity, day of the week, patient, and a recent prior arrhythmia. We found increased risks of ventricular arrhythmias associated with 2-day mean exposure for all air pollutants considered, although these associations were not statistically significant. We found statistically significant associations between air pollution and ventricular arrhythmias for episodes within 3 days of a previous arrhythmia. The associations of ventricular tachyarrhythmias with fine particle mass, carbon monoxide, nitrogen dioxide, and black carbon suggest a link with motor vehicle pollutants. The associations with sulfate suggest a link with stationary fossil fuel combustion sources
A new approach to generating research-quality data through citizen science: The USA National Phenology Monitoring System
Phenology is one of the most sensitive biological responses to climate change, and recent changes in phenology have the potential to shake up ecosystems. In some cases, it appears they already are. Thus, for ecological reasons it is critical that we improve our understanding of species’ phenologies and how these phenologies are responding to recent, rapid climate change. Phenological events like flowering and bird migrations are easy to observe, culturally important, and, at a fundamental level, naturally inspire human curiosity— thus providing an excellent opportunity to engage citizen scientists. The USA National Phenology Network has recently initiated a national effort to encourage people at different levels of expertise—from backyard naturalists to professional scientists—to observe phenological events and contribute to a national database that will be used to greatly improve our understanding of spatio-temporal variation in phenology and associated phenological responses to climate change.

Traditional phenological observation protocols identify specific dates at which individual phenological events are observed. The scientific usefulness of long-term phenological observations could be improved with a more carefully structured protocol. At the USA-NPN we have developed a new approach that directs observers to record each day that they observe an individual plant, and to assess and report the state of specific life stages (or phenophases) as occurring or not occurring on that plant for each observation date. Evaluation is phrased in terms of simple, easy-to-understand, questions (e.g. “Do you see open flowers?”), which makes it very appropriate for a citizen science audience. From this method, a rich dataset of phenological metrics can be extracted, including the duration of a phenophase (e.g. open flowers), the beginning and end points of a phenophase (e.g. traditional phenological events such as first flower and last flower), multiple distinct occurrences of phenophases within a single growing season (e.g multiple flowering events, common in drought-prone regions), as well as quantification of sampling frequency and observational uncertainties. These features greatly enhance the utility of the resulting data for statistical analyses addressing questions such as how phenological events vary in time and space, and in response to global change. This new protocol is an important step forward, and its widespread adoption will increase the scientific value of data collected by citizen scientists.

History of Lilac Phenological Observations in the USA
The Western Research and Demonstration Farm became a member of the “USA National Phenology Network” in 2008 when a set of cloned lilacs were planted on June 2, 2008. Phenological observations, or the date specific plant growth stages are reached, will be reported to the network and compiled with other observer data from across the nation. These observations will be used for various purposes, some of these uses may include 1) characterize seasonal weather patterns and improve predictions of crop yield, 2) help predict disease or pest outbreaks, and 3) allow the pursuit of more detailed questions of plant responses to global warming at a national scale
VETA-1 x ray detection system
The alignment and X-ray imaging performance of the Advanced X-ray Astrophysics Facility (AXAF) Verification Engineering Test Article-I (VETA-I) was measured by the VETA-I X-Ray Detection System (VXDS). The VXDS was based on the X-ray detection system utilized in the AXAF Technology Mirror Assembly (TMA) program, upgraded to meet the more stringent requirements of the VETA-I test program. The VXDS includes two types of X-ray detectors: (1) a High Resolution Imager (HRI) which provides X-ray imaging capabilities, and (2) sealed and flow proportional counters which, in conjunction with apertures of various types and precision translation stages, provide the most accurate measurement of VETA-I performance. Herein we give an overview of the VXDS hardware including X-ray detectors, translation stages, apertures, proportional counters and flow counter gas supply system and associated electronics. We also describe the installation of the VXDS into the Marshall Space Flight Center (MSFC) X-Ray Calibration Facility (XRCF). We discuss in detail the design and performance of those elements of the VXDS which have not been discussed elsewhere; translation systems, flow counter gas supply system, apertures and thermal monitoring system
Lynx X-Ray Observatory: An Overview
Lynx, one of the four strategic mission concepts under study for the 2020 Astrophysics Decadal Survey, provides leaps in capability over previous and planned x-ray missions and provides synergistic observations in the 2030s to a multitude of space- and ground-based observatories across all wavelengths. Lynx provides orders of magnitude improvement in sensitivity, on-axis subarcsecond imaging with arcsecond angular resolution over a large field of view, and high-resolution spectroscopy for point-like and extended sources in the 0.2- to 10-keV range. The Lynx architecture enables a broad range of unique and compelling science to be carried out mainly through a General Observer Program. This program is envisioned to include detecting the very first seed black holes, revealing the high-energy drivers of galaxy formation and evolution, and characterizing the mechanisms that govern stellar evolution and stellar ecosystems. The Lynx optics and science instruments are carefully designed to optimize the science capability and, when combined, form an exciting architecture that utilizes relatively mature technologies for a cost that is compatible with the projected NASA Astrophysics budget
Collective and single cell behavior in epithelial contact inhibition
Control of cell proliferation is a fundamental aspect of tissue physiology
central to morphogenesis, wound healing and cancer. Although many of the
molecular genetic factors are now known, the system level regulation of growth
is still poorly understood. A simple form of inhibition of cell proliferation
is encountered in vitro in normally differentiating epithelial cell cultures
and is known as "contact inhibition". The study presented here provides a
quantitative characterization of contact inhibition dynamics on tissue-wide and
single cell levels. Using long-term tracking of cultured MDCK cells we
demonstrate that inhibition of cell division in a confluent monolayer follows
inhibition of cell motility and sets in when mechanical constraint on local
expansion causes divisions to reduce cell area. We quantify cell motility and
cell cycle statistics in the low density confluent regime and their change
across the transition to epithelial morphology which occurs with increasing
cell density. We then study the dynamics of cell area distribution arising
through reductive division, determine the average mitotic rate as a function of
cell size and demonstrate that complete arrest of mitosis occurs when cell area
falls below a critical value. We also present a simple computational model of
growth mechanics which captures all aspects of the observed behavior. Our
measurements and analysis show that contact inhibition is a consequence of
mechanical interaction and constraint rather than interfacial contact alone,
and define quantitative phenotypes that can guide future studies of molecular
mechanisms underlying contact inhibition
Probing the role of the cation–π interaction in the binding sites of GPCRs using unnatural amino acids
We describe a general application of the nonsense suppression methodology for unnatural amino acid incorporation to probe drug–receptor interactions in functional G protein-coupled receptors (GPCRs), evaluating the binding sites of both the M2 muscarinic acetylcholine receptor and the D2 dopamine receptor. Receptors were expressed in Xenopus oocytes, and activation of a G protein-coupled, inward-rectifying K^+ channel (GIRK) provided, after optimization of conditions, a quantitative readout of receptor function. A number of aromatic amino acids thought to be near the agonist-binding site were evaluated. Incorporation of a series of fluorinated tryptophan derivatives at W6.48 of the D2 receptor establishes a cation–π interaction between the agonist dopamine and W6.48, suggesting a reorientation of W6.48 on agonist binding, consistent with proposed “rotamer switch” models. Interestingly, no comparable cation–π interaction was found at the aligning residue in the M2 receptor
An Integrated Approach for Characterizing Aerosol Climate Impacts and Environmental Interactions
Aerosols exert myriad influences on the earth's environment and climate, and on human health. The complexity of aerosol-related processes requires that information gathered to improve our understanding of climate change must originate from multiple sources, and that effective strategies for data integration need to be established. While a vast array of observed and modeled data are becoming available, the aerosol research community currently lacks the necessary tools and infrastructure to reap maximum scientific benefit from these data. Spatial and temporal sampling differences among a diverse set of sensors, nonuniform data qualities, aerosol mesoscale variabilities, and difficulties in separating cloud effects are some of the challenges that need to be addressed. Maximizing the long-term benefit from these data also requires maintaining consistently well-understood accuracies as measurement approaches evolve and improve. Achieving a comprehensive understanding of how aerosol physical, chemical, and radiative processes impact the earth system can be achieved only through a multidisciplinary, inter-agency, and international initiative capable of dealing with these issues. A systematic approach, capitalizing on modern measurement and modeling techniques, geospatial statistics methodologies, and high-performance information technologies, can provide the necessary machinery to support this objective. We outline a framework for integrating and interpreting observations and models, and establishing an accurate, consistent, and cohesive long-term record, following a strategy whereby information and tools of progressively greater sophistication are incorporated as problems of increasing complexity are tackled. This concept is named the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON). To encompass the breadth of the effort required, we present a set of recommendations dealing with data interoperability; measurement and model integration; multisensor synergy; data summarization and mining; model evaluation; calibration and validation; augmentation of surface and in situ measurements; advances in passive and active remote sensing; and design of satellite missions. Without an initiative of this nature, the scientific and policy communities will continue to struggle with understanding the quantitative impact of complex aerosol processes on regional and global climate change and air quality
Characteristics of transposable element exonization within human and mouse
Insertion of transposed elements within mammalian genes is thought to be an
important contributor to mammalian evolution and speciation. Insertion of
transposed elements into introns can lead to their activation as alternatively
spliced cassette exons, an event called exonization. Elucidation of the
evolutionary constraints that have shaped fixation of transposed elements
within human and mouse protein coding genes and subsequent exonization is
important for understanding of how the exonization process has affected
transcriptome and proteome complexities. Here we show that exonization of
transposed elements is biased towards the beginning of the coding sequence in
both human and mouse genes. Analysis of single nucleotide polymorphisms (SNPs)
revealed that exonization of transposed elements can be population-specific,
implying that exonizations may enhance divergence and lead to speciation. SNP
density analysis revealed differences between Alu and other transposed
elements. Finally, we identified cases of primate-specific Alu elements that
depend on RNA editing for their exonization. These results shed light on TE
fixation and the exonization process within human and mouse genes.Comment: 11 pages, 4 figure
- …
