98 research outputs found

    Minnesota's 2022 Post-Election Review: Report and Recommendations

    Get PDF
    Minnesota's post-election review (PER), also called a post-election audit, refers to election officials hand counting votes on randomly selected paper ballots and comparing the totals to the corresponding Election Day voting machine totals. This procedure is an important check on the accuracy of the machines. The review also provides information used to improve election processes, and it provides the public with an opportunity to observe the verification of our elections. Minnesota's PER was first implemented in 2006 and is conducted in general elections every two years in congressional and key statewide races.Since 2006, Citizens for Election Integrity Minnesota (CEIMN) has organized eight non partisan observations of Minnesota's PERs. In 2022 CEIMN partnered with the League of Women Voters Minnesota as we had done in 2006 and 2008, to organize 40 non-partisan volunteers to observe the review in 11 counties.Our observers filled out a detailed questionnaire (Appendix A) during the 2022 review. That survey data indicated that the review was conducted in a transparent, efficient and professional manner. Observers expressed confidence in the accuracy and integrity of the PER.Â

    Analytic Metaphysics versus Naturalized Metaphysics: The Relevance of Applied Ontology

    Get PDF
    The relevance of analytic metaphysics has come under criticism: Ladyman & Ross, for instance, have suggested do discontinue the field. French & McKenzie have argued in defense of analytic metaphysics that it develops tools that could turn out to be useful for philosophy of physics. In this article, we show first that this heuristic defense of metaphysics can be extended to the scientific field of applied ontology, which uses constructs from analytic metaphysics. Second, we elaborate on a parallel by French & McKenzie between mathematics and metaphysics to show that the whole field of analytic metaphysics, being useful not only for philosophy but also for science, should continue to exist as a largely autonomous field

    Coordinating Audits and Recounts to Strengthen Election Verification

    Get PDF
    The 2020 presidential election was followed by an extensive period of scrutiny and challenge. Some of these activities were typical—automatic recounts, optional recounts, and routine tabulation audits—and some were highly irregular. Widespread misinformation sowed confusion and distrust. As election officials strive to promote public confidence in our elections, it is important to emphasize that recounts and tabulation audits are normal procedures, and they are vital to our elections. Recounts and audits, when properly designed and conducted, can help assure candidates and the public that there was a fair examination of the results and an accurate count of all legally cast votes. State requirements for tabulation audits have been expanding. Recounts are common and will continue to be part of the contentious post-election landscape. Elections need both audits and recounts, and they need audits and recounts to work well together. This paper describes how to dovetail audits and recounts to bolster public confidence in election results. Every state can do better, and this paper provides guidelines for how

    Use of Ecological Sites in Managing Wildlife and Livestock: An Example with Prairie Dogs

    Get PDF
    On the Ground The perception of prairie dogs among Native Americans living on the Standing Rock Sioux Reservation is mixed. Some Native Americans focus on the loss of forage productivity, whereas others are interested in the cultural and ecological aspects of prairie dogs. The use of ecological sites may provide a mechanism for developing a management framework that would consider both livestock and prairie dogs. The three ecological sites we surveyed had large differences in off-colony standing crop, but in 2 of the 3 years we surveyed, there were no differences between standing crop on-colony. This suggests that management of prairie dogs on rangelands should focus on limiting prairie dogs on more productive ecological sites with less productive sites receiving less emphasis

    Long-term soil change in the US Great Plains: An evaluation of the Haas Soil Archive

    Get PDF
    Diverse patterns of climate and edaphic factors challenge detection of soil property change in the US Great Plains. Because detectable soil change can take decades, insights into the trajectory of soil properties frequently require long-term site monitoring and, where available, associated soil archives to enable comparisons with initial or baseline states. Unfortunately, few multi-decadal soil change investigations have been conducted in this region. Here, we document effects of dryland cropping on a suite of soil properties by comparing matched historic (1947) and contemporary (2018) soil samples from the Haas Soil Archive at three sites in the US Great Plains: Moccasin, MT, Akron, CO, and Big Spring, TX. Current analytical methods were used to provide insight into changes in soil texture, pH, carbon, and micronutrients at 0- to 15.2-cm and 15.2- to 30.5-cm depths. Changes in direction and magnitude of soil properties over 71 years were site specific. Changes in textural class occurred at all sites, with Moccasin and Akron transitioning from loam to clay loam and Big Spring from sandy clay loam to sandy loam. The soil pH reaction class changed from slightly alkaline to moderately acid at Akron and slightly alkaline to moderately alkaline at Big Spring. At 0–15.2 cm, soil organic carbon decreased by 15% and 36% at Moccasin and Big Spring, respectively, but increased by 15% at Akron. Soil micronutrients generally declined at all sites. Weather-related variables derived from air temperature and precipitation records were not correlated with soil change. Inferred factors contributing to soil change included on-site management, inherent soil features, weather metrics not evaluated, or a combination thereof

    Environmental and Demographic Determinants of Avian Influenza Viruses in Waterfowl across the Contiguous United States

    Get PDF
    Outbreaks of avian influenza in North American poultry have been linked to wild waterfowl. A first step towards understanding where and when avian influenza viruses might emerge from North American waterfowl is to identify environmental and demographic determinants of infection in their populations. Laboratory studies indicate water temperature as one determinant of environmental viral persistence and we explored this hypothesis at the landscape scale. We also hypothesized that the interval apparent prevalence in ducks within a local watershed during the overwintering season would influence infection probabilities during the following breeding season within the same local watershed. Using avian influenza virus surveillance data collected from 19,965 wild waterfowl across the contiguous United States between October 2006 and September 2009 We fit Logistic regression models relating the infection status of individual birds sampled on their breeding grounds to demographic characteristics, temperature, and interval apparent prevalence during the preceding overwintering season at the local watershed scale. We found strong support for sex, age, and species differences in the probability an individual duck tested positive for avian influenza virus. In addition, we found that for every seven days the local minimum temperature fell below zero, the chance an individual would test positive for avian influenza virus increased by 5.9 percent. We also found a twelve percent increase in the chance an individual would test positive during the breeding season for every ten percent increase in the interval apparent prevalence during the prior overwintering season. These results suggest that viral deposition in water and sub-freezing temperatures during the overwintering season may act as determinants of individual level infection risk during the subsequent breeding season. Our findings have implications for future surveillance activities in waterfowl and domestic poultry populations. Further study is needed to identify how these drivers might interact with other host-specific infection determinants, such as species phylogeny, immunological status, and behavioral characteristics

    Global Patterns and Controls of Nutrient Immobilization On Decomposing Cellulose In Riverine Ecosystems

    Get PDF
    Microbes play a critical role in plant litter decomposition and influence the fate of carbon in rivers and riparian zones. When decomposing low-nutrient plant litter, microbes acquire nitrogen (N) and phosphorus (P) from the environment (i.e., nutrient immobilization), and this process is potentially sensitive to nutrient loading and changing climate. Nonetheless, environmental controls on immobilization are poorly understood because rates are also influenced by plant litter chemistry, which is coupled to the same environmental factors. Here we used a standardized, low-nutrient organic matter substrate (cotton strips) to quantify nutrient immobilization at 100 paired stream and riparian sites representing 11 biomes worldwide. Immobilization rates varied by three orders of magnitude, were greater in rivers than riparian zones, and were strongly correlated to decomposition rates. In rivers, P immobilization rates were controlled by surface water phosphate concentrations, but N immobilization rates were not related to inorganic N. The N:P of immobilized nutrients was tightly constrained to a molar ratio of 10:1 despite wide variation in surface water N:P. Immobilization rates were temperature-dependent in riparian zones but not related to temperature in rivers. However, in rivers nutrient supply ultimately controlled whether microbes could achieve the maximum expected decomposition rate at a given temperature

    Revealing the Technological Irresponsibility in Curriculum Design

    Full text link
    corecore