161 research outputs found
Stromule formation is dependent upon plastid size, plastid differentiation status and the density of plastids within the cell
Stromules are motile extensions of the plastid envelope membrane, whose roles are not fully understood. They are present on all plastid types but are more common and extensive on non-green plastids that are sparsely distributed within the cell. During tomato fruit ripening, chloroplasts in the mesocarp tissue differentiate into chromoplasts and undergo major shifts in morphology. In order to understand what factors regulate stromule formation, we analysed stromule biogenesis in tobacco hypocotyls and in two distinct plastid populations in tomato mesocarp. We show that increases in stromule length and frequency are correlated with chromoplast differentiation, but only in one plastid population where the plastids are larger and less numerous. We used tobacco hypocotyls to confirm that stromule length increases as plastids become further apart, suggesting that stromules optimise the plastid-cytoplasm contact area. Furthermore, we demonstrate that ectopic chloroplast components decrease stromule formation on tomato fruit chromoplasts, whereas preventing chloroplast development leads to increased numbers of stromules. Inhibition of fruit ripening has a dramatic impact on plastid and stromule morphology, underlining that plastid differentiation status, and not cell type, is a significant factor in determining the extent of plastid stromules. By modifying the plastid surface area, we propose that stromules enhance the specific metabolic activities of plastids.
This is an electronic version of an Article published in The Plant Journal, August 2004, Volume 39, pp. 655-667. Copyright 2004 Blackwell Publishing Ltd and The Society for Experimental Biology
Stromule formation is dependent upon plastid size, plastid differentiation status and the density of plastids within the cell
Stromules are motile extensions of the plastid envelope membrane, whose roles are not fully understood. They are present on all plastid types but are more common and extensive on non-green plastids that are sparsely distributed within the cell. During tomato fruit ripening, chloroplasts in the mesocarp tissue differentiate into chromoplasts and undergo major shifts in morphology. In order to understand what factors regulate stromule formation, we analysed stromule biogenesis in tobacco hypocotyls and in two distinct plastid populations in tomato mesocarp. We show that increases in stromule length and frequency are correlated with chromoplast differentiation, but only in one plastid population where the plastids are larger and less numerous. We used tobacco hypocotyls to confirm that stromule length increases as plastids become further apart, suggesting that stromules optimise the plastid-cytoplasm contact area. Furthermore, we demonstrate that ectopic chloroplast components decrease stromule formation on tomato fruit chromoplasts, whereas preventing chloroplast development leads to increased numbers of stromules. Inhibition of fruit ripening has a dramatic impact on plastid and stromule morphology, underlining that plastid differentiation status, and not cell type, is a significant factor in determining the extent of plastid stromules. By modifying the plastid surface area, we propose that stromules enhance the specific metabolic activities of plastids.
This is an electronic version of an Article published in The Plant Journal, August 2004, Volume 39, pp. 655-667. Copyright 2004 Blackwell Publishing Ltd and The Society for Experimental Biology
Connecting Science with Engineering: Using Inquiry and Design in a Teacher Professional Development Course
The engineering design process has evolved over time to be the central and effective framework that engineers use to conduct their work. Logically, K-12 STEM professional development efforts have then attempted to incorporate the design process into their work. There has been little in the STEM literature, though, of the explicit measurement of the growth in design process knowledge. Our study presents findings of significant improvements in knowledge of the design process that resulted over the course of a recent summer STEM institute and professional development program among K-5 teachers.
As more emphasis is placed on integrating STEM into the curriculum 1 there is a need to enhance the capacity for K-12 teachers. Responding to this call the Colleges of Engineering and Education at Boise State University collaborated to offer an intensive three-day summer institute to address the preparation of elementary school teachers (grades K-5) to teach STEM curriculum. The focus of our institute was on the use of both inquiry and design as approaches for integrating STEM content. In particular we explicitly stressed the link between science and inquiry and engineering and design, how these processes differ, how they can complement each other and how they can be used instructionally to teach a wide range of STEM content. The instructional materials used in the workshop included Lego®-like bricks called PCS BrickLab® (supplied by PCS Edventures! an educational products company) and other common classroom items such as paper, tape, string, and cardboard.. Each participant received a classroom set of the materials at the close of the workshop. The BrickLab® kit contains over 5,000 bricks which is sufficient to simultaneously engage up to about 30 students in hands-on activities, which makes these instructional materials particularly suitable to facilitate classroom instruction using inquiry and design. We engaged the participants in a series of hands-on activities focused on the inquiry process of manipulating variables to gather data to explain phenomena or design processes that focus on creating and refining the best solution given constraints.
To determine the effectiveness of our workshop we gathered pre and post data to assess our 58 participants\u27 comfort for teaching STEM, their STEM pedagogical discontentment, their implementation of inquiry curriculum, and their knowledge of the design process. Our initial results indicate significant increases in comfort teaching STEM (t = 12.761, p \u3c .01), decreases in STEM pedagogical discontentment (t = 7.281, p \u3c .01), and increases in design process knowledge (t = 6.072, p \u3c .01). Delayed post data collection for the implementation of inquiry took place in Fall 2010, which allowed time for the participating teachers to apply their learned knowledge and develop a post conference context for their instructional practice with students. All instruments used for data collection were extant and had established reliability and validity.
Our results indicate that our three-day summer institute and follow-up support increased our participants\u27 knowledge of design along with comfort for teaching STEM. Also, the institute decreased the teachers’ pedagogical discontentment for teaching STEM
Prolonged low flow reduces reactive hyperemia and augments low flow mediated constriction in the brachial artery independent of the menstrual cycle
© 2013 Rakobowchuk et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Non-invasive forearm ischemia-reperfusion injury and low flow induced vascular dysfunction models provide methods to
evaluate vascular function. The role of oestrogen, an endogenous anti-oxidant on recovery from ischemia-reperfusion injury
has not been evaluated nor has the impact of prolonged low flow on vascular function been established. Eight healthy women (33610 yr) attended the lab during the follicular, ovulatory and mid-luteal phases of their menstrual cycles. After 30 minutes of rest, brachial artery vascular function was assessed by ultrasound measurements of diameter changes during 5 minutes of forearm ischemia and 3 minutes after. Subsequently, a 20-minute forearm ischemia period was completed. Further, vascular function assessments were completed 15, 30 and 45 minutes into recovery. Flow-mediated dilation, lowflow-mediated constriction, and reactive hyperaemia proximal to the area of ischemia were determined. Flow-mediated dilation was reduced at 15 minutes of recovery but recovered at 30 and 45 minutes (PRE: 7.161.0%, POST15:4.560.6%, POST30:5. 560.7% POST45:5.960.4%, p,0.01). Conversely, low-flow mediated constriction increased (PRE: 21.360.4%, POST15: 23.360.6%, POST30: 22.560.5% POST45: 21.560.12%, p,0.01). Reactive hyperaemia was reduced throughout recovery (p,0.05). Data were unaffected by menstrual phase. Prolonged low flow altered vascular function and may relate as much to increased vasoconstriction as with decreased vasodilation. Reductions in anterograde shear and greater retrograde shear likely modulate the brachial artery response, but the reduced total shear also plays an important role. The data suggest substantial alterations in vascular function proximal to areas of ischemia with potential clinical implications following reperfusion.British Heart Foundation (PG/08/060/25340),a Physiological Society summer studentship to SG, and a Wellcome Trust Vacation Studentship to EP
Effect of local anaesthetic infiltration on chronic postsurgical pain after total hip and knee replacement:The APEX randomised controlled trials
Total hip replacement (THR) and total knee replacement (TKR) are usually effective at relieving pain; however, 7% to 23% of patients experience chronic postsurgical pain. These trials aimed to investigate the effect of local anaesthetic wound infiltration on pain severity at 12 months after primary THR or TKR for osteoarthritis. Between November 2009 and February 2012, 322 patients listed for THR and 316 listed for TKR were recruited into a single-centre double-blind randomised controlled trial. Participants were randomly assigned (1:1) to receive local anaesthetic infiltration and standard care or standard care alone. Participants and outcomes assessors were masked to group allocation. The primary outcome was pain severity on the WOMAC Pain Scale at 12 months after surgery. Analyses were conducted using intention-to-treat and per-protocol approaches. In the hip trial, patients in the intervention group had significantly less pain at 12 months postoperative than patients in the standard care group (differences in means: 4.74; 95% confidence interval [CI]: 0.95-8.54; P = 0.015), although the difference was not clinically significant. Post hoc analysis found that patients in the intervention group were more likely to have none to moderate pain than severe pain at 12 months than those in the standard care group (odds ratio: 10.19; 95% CI: 2.10-49.55; P = 0.004). In the knee trial, there was no strong evidence that the intervention influenced pain severity at 12 months postoperative (difference in means: 3.83; 95% CI: −0.83 to 8.49; P = 0.107). In conclusion, routine use of infiltration could be beneficial in improving long-term pain relief for some patients after THR
Methylmercury degradation and exposure pathways in streams and wetlands impacted by historical mining
The authors acknowledge financial support from the National Science Foundation: EAR-1226741 (to M.B.S.) and EAR-1225630 (to J.D.B.).Monomethyl mercury (MMHg) and total mercury (THg) concentrations and Hg stable isotope ratios (δ202Hg and Δ199Hg) were measured in sediment and aquatic organisms from Cache Creek (California Coast Range) and Yolo Bypass (Sacramento Valley). Cache Creek sediment had a large range in THg (87 to 3870 ng/g) and δ202Hg (− 1.69 to − 0.20‰) reflecting the heterogeneity of Hg mining sources in sediment. The δ202Hg of Yolo Bypass wetland sediment suggests a mixture of high and low THg sediment sources. Relationships between %MMHg (the percent ratio of MMHg to THg) and Hg isotope values (δ202Hg and Δ199Hg) in fish and macroinvertebrates were used to identify and estimate the isotopic composition of MMHg. Deviation from linear relationships was found between %MMHg and Hg isotope values, which is indicative of the bioaccumulation of isotopically distinct pools of MMHg. The isotopic composition of pre-photodegraded MMHg (i.e., subtracting fractionation from photochemical reactions) was estimated and contrasting relationships were observed between the estimated δ202Hg of pre-photodegraded MMHg and sediment IHg. Cache Creek had mass dependent fractionation (MDF; δ202Hg) of at least − 0.4‰ whereas Yolo Bypass had MDF of + 0.2 to + 0.5‰. This result supports the hypothesis that Hg isotope fractionation between IHg and MMHg observed in rivers (− MDF) is unique compared to + MDF observed in non-flowing water environments such as wetlands, lakes, and the coastal ocean.PostprintPeer reviewe
- …
