499 research outputs found
Analysis of the effectiveness of ground-based VLF wave observations for predicting or nowcasting relativistic electron flux at geostationary orbit
Post-storm relativistic electron flux enhancement at geosynchronous orbit has shown correlation with very low frequency (VLF) waves measured by satellite in situ. However, our previous study found little correlation between electron flux and VLF measured by a ground-based instrument at Halley, Antarctica. Here we explore several possible explanations for this low correlation. Using 220 storms (1992–2002), our previous work developed a predictive model of the post-storm flux at geosynchronous orbit based on explanatory variables measured a day or two before the flux increase. In a nowcast model, we use averages of variables from the time period when flux is rising during the recovery phase of geomagnetic storms, and limit the VLF (1.0 kHz) measure to the dawn period at Halley (9–12 UT). This improves the simple correlation of VLF wave intensity with flux, although the VLF effect in an overall multiple regression is still much less than that of other factors. When analyses are performed separately for season and IMF Bz orientation, VLF outweighs the influence of other factors only during winter months when IMF Bz is in an average northward orientation
Empirical predictive models of daily relativistic electron flux at geostationary orbit: Multiple regression analysis
The daily maximum relativistic electron flux at geostationary orbit can be predicted well with a set of daily averaged predictor variables including previous day's flux, seed electron flux, solar wind velocity and number density, AE index, IMF Bz, Dst, and ULF and VLF wave power. As predictor variables are intercorrelated, we used multiple regression analyses to determine which are the most predictive of flux when other variables are controlled. Empirical models produced from regressions of flux on measured predictors from 1 day previous were reasonably effective at predicting novel observations. Adding previous flux to the parameter set improves the prediction of the peak of the increases but delays its anticipation of an event. Previous day's solar wind number density and velocity, AE index, and ULF wave activity are the most significant explanatory variables; however, the AE index, measuring substorm processes, shows a negative correlation with flux when other parameters are controlled. This may be due to the triggering of electromagnetic ion cyclotron waves by substorms that cause electron precipitation. VLF waves show lower, but significant, influence. The combined effect of ULF and VLF waves shows a synergistic interaction, where each increases the influence of the other on flux enhancement. Correlations between observations and predictions for this 1 day lag model ranged from 0.71 to 0.89 (average: 0.78). A path analysis of correlations between predictors suggests that solar wind and IMF parameters affect flux through intermediate processes such as ring current (Dst), AE, and wave activity
Prediction of relativistic electron flux at geostationary orbit following storms: Multiple regression analysis
Many solar wind and magnetosphere parameters correlate with relativistic electron flux following storms. These include relativistic electron flux before the storm, seed electron flux, solar wind velocity and number density (and their variation), IMF Bz, AE and Kp indices, and ultra low frequency (ULF) and very low frequency (VLF) wave power. However, as all these variables are intercorrelated, we use multiple regression analyses to determine which are the most predictive of flux when other variables are controlled. Using 219 storms (1992-2002), we obtained hourly averaged electron fluxes for outer radiation belt relativistic electrons (>1.5 MeV) and seed electrons (100 keV) from LANL spacecraft (geosynchronous orbit). For each storm, we found the log10 maximum relativistic electron flux 48-120 hours after the end of the main phase of each storm. Each predictor variable was averaged over the 12 hours before the storm, main phase, and the 48 hours following minimum Dst. High levels of flux following storms are best modeled by a set of variables. In decreasing influence, ULF, seed electron flux, Vsw and its variation, and after-storm Bz were the most significant explanatory variables. Kp can be added to the model, but it adds no further explanatory power. Although we included ground-based VLF power from Halley, Antarctica, it shows little predictive ability. We produced predictive models using the coefficients from the regression models, and assessed their effectiveness in predicting novel observations. The correlation between observed values and those predicted by these empirical models ranged from .645 to .795
The unexpected resurgence of Weyl geometry in late 20-th century physics
Weyl's original scale geometry of 1918 ("purely infinitesimal geometry") was
withdrawn by its author from physical theorizing in the early 1920s. It had a
comeback in the last third of the 20th century in different contexts: scalar
tensor theories of gravity, foundations of gravity, foundations of quantum
mechanics, elementary particle physics, and cosmology. It seems that Weyl
geometry continues to offer an open research potential for the foundations of
physics even after the turn to the new millennium.Comment: Completely rewritten conference paper 'Beyond Einstein', Mainz Sep
2008. Preprint ELHC (Epistemology of the LHC) 2017-02, 92 pages, 1 figur
Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes.
BackgroundGeneral translational cis-elements are present in the mRNAs of all genes and affect the recruitment, assembly, and progress of preinitiation complexes and the ribosome under many physiological states. These elements include mRNA folding, upstream open reading frames, specific nucleotides flanking the initiating AUG codon, protein coding sequence length, and codon usage. The quantitative contributions of these sequence features and how and why they coordinate to control translation rates are not well understood.ResultsHere, we show that these sequence features specify 42-81% of the variance in translation rates in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, Mus musculus, and Homo sapiens. We establish that control by RNA secondary structure is chiefly mediated by highly folded 25-60 nucleotide segments within mRNA 5' regions, that changes in tri-nucleotide frequencies between highly and poorly translated 5' regions are correlated between all species, and that control by distinct biochemical processes is extensively correlated as is regulation by a single process acting in different parts of the same mRNA.ConclusionsOur work shows that general features control a much larger fraction of the variance in translation rates than previously realized. We provide a more detailed and accurate understanding of the aspects of RNA structure that directs translation in diverse eukaryotes. In addition, we note that the strongly correlated regulation between and within cis-control features will cause more even densities of translational complexes along each mRNA and therefore more efficient use of the translation machinery by the cell
Enabling wound healing and preventing Limb Amputation: a cost-benefit case study of Hydro-Responsive Wound Dressings
Diabetic foot ulceration can deteriorate to the extent that amputation is a likely clinical option. Ulceration and amputation have a significant impact on patient mortality and quality of life. This case study exemplifies how a patient with a large dorsal non-healing ulcer and a dehisced surgical wound/graft site was treated successfully with new hydro-responsive wound dressings (HydroClean® plus and HydroTac®). There were significant cost savings using hydro-responsive wound dressings (£261.38) in relation to standard wound care (£534.89), plus potential savings from preventing an above-knee amputation (£10,911.55). The potential for amputation is included as the patient was typical of individuals with poorly-controlled diabetes. The results of this case study are not generalisable, but they highlight the need for trial-based research into dressings used for diabetic foot ulceration
A pleiotropic missense variant in SLC39A8 is associated with Crohn's disease and human gut microbiome composition
Genome-wide association studies have identified 200 inflammatory bowel disease (IBD) loci, but the genetic architecture of Crohn's disease (CD) and ulcerative colitis remain incompletely defined. Here, we aimed to identify novel associations between IBD and functional genetic variants using the Illumina ExomeChip (San Diego, CA)
- …
