1,911 research outputs found

    Sex assignment in conditions affecting sex development

    Get PDF
    The newborn infant with atypical genitalia presents a challenging clinical scenario and requires expert input. There have been appreciable advances in our knowledge of the underlying causes that may lead to a mere difference or a more serious disorder of sex development (DSD), the natural history of conditions, as well as the short and long-term complications of these conditions themselves, together with the clinical interventions that are associated with these conditions. With this information, the DSD expert can be more confident when discussing options with the parents of the newborn infant. By working within a multidisciplinary team, the expert should be able to support the family whilst individualising the management plan so that it is also cognizant of the shifts in societal attitudes and expectations around concepts of diversity and openness. It is, therefore, likely that the practice of assigning sex, especially in those cases where sex assignment is unclear on expert assessment, will continue to show temporal, social and geographical variations. It is imperative that clinical data for rare conditions such as these are collected in a standardized format and shared through a common registry so that any evidence that is used for future shifts in practice has a stronger foundation than that which is currently available

    High order fluid model for streamer discharges. II. Numerical solution and investigation of planar fronts

    Get PDF
    The high order fluid model developed in the preceding paper is employed here to study the propagation of negative planar streamer fronts in pure nitrogen. The model consists of the balance equations for electron density, average electron velocity, average electron energy and average electron energy flux. These balance equations have been obtained as velocity moments of Boltzmann's equation and are here coupled to the Poisson equation for the space charge electric field. Here the results of simulations with the high order model, with a PIC/MC (Particle in cell/Monte Carlo) model and with the first order fluid model based on the hydrodynamic drift-diffusion approximation are presented and compared. The comparison with the MC model clearly validates our high order fluid model, thus supporting its correct theoretical derivation and numerical implementation. The results of the first order fluid model with local field approximation, as usually used for streamer discharges, show considerable deviations. Furthermore, we study the inaccuracies of simulation results caused by an inconsistent implementation of transport data into our high order fluid model. We also demonstrate the importance of the energy flux term in the high order model by comparing with results where this term is neglected. Finally, results with an approximation for the high order tensor in the energy flux equation is found to agree well with the PIC/MC results for reduced electric fields up to 1000 Townsend, as considered in this work.Comment: 26 pages, 11 figure

    Functional Foods in the Marketplace: Willingness to Pay for Apples Enriched with Antioxidants

    Get PDF
    The attention on so-called functional foods has been growing as consumers become more concerned with diet and nutrition. This article aims to measure consumers response to apples with naturally enriched antioxidant coatings. Surveys were conducted in grocery stores in Seattle, Washington and Spokane, Washington. The results suggest that consumers have a somewhat positive attitude towards functional foods in general and with apples enriched with antioxidants in particular. A contingent valuation technique was used to assess factors affecting consumers willingness to pay for the apples with antioxidant coatings. Consumers in the Spokane grocery stores are more likely to pay a premium for the new type of apples than consumers in Seattle. Consumers who look for a wide variety of product in choosing where to shop for food are more likely to pay a premium for apples enriched with antioxidants. Also, it is estimated that consumers, on average, are willing to pay from 4% to 8% premium for these apples.functional food, willingness to pay, antioxidants, Demand and Price Analysis, Health Economics and Policy,

    Investigating the relationship between material properties and laser-induced damage threshold of dielectric optical coatings at 1064 nm

    Get PDF
    The Laser Induced Damage Threshold (LIDT) and material properties of various multi-layer amorphous dielectric optical coatings, including Nb2O5, Ta2O5, SiO2, TiO2, ZrO2, AlN, SiN, LiF and ZnSe, have been studied. The coatings were produced by ion assisted electron beam and thermal evaporation; and RF and DC magnetron sputtering at Helia Photonics Ltd, Livingston, UK. The coatings were characterized by optical absorption measurements at 1064 nm by Photothermal Common-path Interferometry (PCI). Surface roughness and damage pits were analyzed using atomic force microscopy. LIDT measurements were carried out at 1064 nm, with a pulse duration of 9.6 ns and repetition rate of 100 Hz, in both 1000-on-1 and 1-on-1 regimes. The relationship between optical absorption, LIDT and post-deposition heattreatment is discussed, along with analysis of the surface morphology of the LIDT damage sites showing both coating and substrate failure

    Comparison of single-layer and double-layer anti-reflection coatings using laser-induced damage threshold and photothermal common-path interferometry

    Get PDF
    The dielectric thin-film coating on high-power optical components is often the weakest region and will fail at elevated optical fluences. A comparison of single-layer coatings of ZrO2, LiF, Ta2O5, SiN, and SiO2 along with anti-reflection (AR) coatings optimized at 1064 nm comprised of ZrO2 and Ta2O5 was made, and the results of photothermal common-path interferometry (PCI) and a laser-induced damage threshold (LIDT) are presented here. The coatings were grown by radio frequency (RF) sputtering, pulsed direct-current (DC) sputtering, ion-assisted electron beam evaporation (IAD), and thermal evaporation. Test regimes for LIDT used pulse durations of 9.6 ns at 100 Hz for 1000-on-1 and 1-on-1 regimes at 1064 nm for single-layer and AR coatings, and 20 ns at 20 Hz for a 200-on-1 regime to compare the //ZrO2/SiO2 AR coating

    Exchange Interactions in a Dinuclear Manganese (II) Complex with Cyanopyridine-N-oxide Bridging Ligands

    Full text link
    The structure and magnetic properties of oligonuclear manganese complex [Mn(hfa)2cpo]2 (where hfa is hexafluoroacetylacetonate dehydrate and cpo is 4-cyanopyridine-N-oxide) are presented. In the unit cell, the dinuclear molecules are well isolated from each other. The non-monotonous dependence of magnetic susceptibility is explained in terms of the hierarchy of exchange parameters by using exact diagonalization. The thermodynamic behavior of pure cpo and [Mn(hfa)2(cpo)]2 is simulated numerically in a dimer approximation by an extrapolation to spin S = 5/2. The Mn-Mn exchange integral is evaluated.Comment: Final corrected version, pdf, 12 page

    Optical absorption of ion-beam sputtered amorphous silicon coatings

    Get PDF
    Low mechanical loss at low temperatures and a high index of refraction should make silicon optimally suited for thermal noise reduction in highly reflective mirror coatings for gravitational wave detectors. However, due to high optical absorption, amorphous silicon (aSi) is unsuitable for being used as a direct high-index coating material to replace tantala. A possible solution is a multimaterial design, which enables exploitation of the excellent mechanical properties of aSi in the lower coating layers. The possible number of aSi layers increases with absorption reduction. In this work, the optimum heat treatment temperature of aSi deposited via ion-beam sputtering was investigated and found to be 450 °C. For this temperature, the absorption after deposition of a single layer of aSi at 1064 nm and 1550 nm was reduced by more than 80%

    Magnetic Properties of J-J-J' Quantum Heisenberg Chains with Spin S=1/2, 1, 3/2 and 2 in a Magnetic Field

    Full text link
    By means of the density matrix renormalization group (DMRG) method, the magnetic properties of the J-J-J^{\prime} quantum Heisenberg chains with spin S=1/2S=1/2, 1, 3/2 and 2 in the ground states are investigated in the presence of a magnetic field. Two different cases are considered: (a) when JJ is antiferromagnetic and JJ^{\prime} is ferromagnetic (i.e. the AF-AF-F chain), the system is a ferrimagnet. The plateaus of the magnetization are observed. It is found that the width of the plateaus decreases with increasing the ferromagnetic coupling, and disappears when % J^{\prime}/J passes over a critical value. The saturated field is observed to be independent of the ferromagnetic coupling; (b) when JJ is ferromagnetic and JJ^{\prime} is antiferromagnetic (i.e. the F-F-AF chain), the system becomes an antiferromagnet. The plateaus of the magnetization are also seen. The width of the plateaus decreases with decreasing the antiferromagnetic coupling, and disappears when J/JJ^{\prime}/J passes over a critical value. Though the ground state properties are quite different, the magnetization plateaus in both cases tend to disappear when the ferromagnetic coupling becomes more dominant. Besides, no fundamental difference between the systems with spin half-integer and integer has been found.Comment: 8 pages, 9 figures, to be published in J. Phys.: Condens. Matte
    corecore