85 research outputs found

    Noxious counterirritation in patients with advanced osteoarthritis of the knee reduces MCC but not SII pain generators: A combined use of MEG and EEG

    Get PDF
    Chronic pain is mainly a result of two processes: peripheral and central sensitization, which can result in neuroplastic changes. Previous psychophysical studies suggested a decrease of the so-called pain-inhibiting-pain effect (DNIC) in chronic pain patients. We aimed to study the DNIC effect on the neuronal level using magnetoencephalography and electroencephalography in 12 patients suffering from advanced unilateral knee osteoarthritis (OA). DNIC was induced in patients by provoking the typical OA pain by a slightly hyperextended joint position, while they received short electrical pain stimuli. Although the patients did not report a reduction of electrical pain perception, the cingulate gyrus showed a decrease of activation during provoked OA pain, while activity in the secondary somatosensory cortex did not change. Based on much stronger DNIC induction at comparable intensities of an acute counterirritant pain in healthy subjects this result suggests a deficit of DNIC in OA patients. We suggest that the strength of DNIC is subject to neuronal plasticity of descending inhibitory pain systems and diminishes during the development of a chronic pain condition

    Reconstruction of the acetabulum in THA using femoral head autografts in developmental dysplasia of the hip

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Severe acetabular deficiencies in cases of developmental dysplasia of the hip (DDH) often require complex reconstructive procedures in total hip arthroplasty (THA). The use of autologous femoral head grafts for acetabular reconstruction has been described, but few data is available about clinical results, the rates of non-union or aseptic loosening of acetabular components.</p> <p>Methods</p> <p>In a retrospective approach, 101 patients with 118 THA requiring autologous femoral head grafts to the acetabulum because of DDH were included. Six patients had died, another 6 were lost to follow-up, and 104 hips were available for clinical and radiological evaluation at a mean of 68 ± 15 (13 to 159) months.</p> <p>Results</p> <p>The average Merle d'Aubigné hip score improved from 9 to 16 points. Seven implants had to be revised due to aseptic loosening (6.7%). The revisions were performed 90 ± 34 (56 to 159) months after implantation. The other hips showed a stable position of the sockets without any signs of bony non-union, severe radiolucencies at the implant-graft interface or significant resorption of the graft.</p> <p>Conclusion</p> <p>The use of autologous femoral head grafts with cementless cups in primary THA can achieve promising short- to midterm results in patients with dysplastic hips.</p

    TKA following high tibial osteotomy versus primary TKA - a matched pair analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High tibial osteotomy (HTO) is a well established technique for the treatment of medial osteoarthritis of the knee with varus malalignment. Results of total knee arthroplasty (TKA) after previous HTO are still discussed controversially. The aim of this study was to elucidate the clinical and radiological results as well as perioperative data of prior HTO on TKA.</p> <p>Methods</p> <p>Forty-one TKA after HTO were compared to 41 primary TKA at minimum of six years follow-up. Patients were matched according to age, gender, follow-up, etiology, and prosthetic design. Surgical data and complications were evaluated. Clinical outcome was assessed using a number of clinical scores and the visual analogue scale (VAS) for pain. X-rays were evaluated by the method of the American Knee Society. The patellar position was measured by the Insall-Salvati ratio.</p> <p>Results</p> <p>There was no significant difference in mean operation time (p = 0.47) and complication rate (p = 0.08). The Knee Score of the KSS (p = 0.0007) and the ROM (p = 0.006 for extension and p = 0.004 for flexion, respectively) were significantly better in the control group. Mid-term results of the VAS, WOMAC, Lequesne, UCLA, Feller's Patellar Score and SF-36 showed no significant difference. Femoral and tibial component alignment were similar in both groups. One tibial component showed suspect radiolucencies in the HTO group. The Insall-Salvati ratio showed three patients with patella alta and one patient with patella baja in the HTO group. At latest follow-up all implants were still in place.</p> <p>Conclusions</p> <p>Evaluating the clinical and radiological outcome, significant differences were only detected for range of motion and the Knee Score of the KSS. The present study suggests that the results of TKA with and without prior HTO are mainly identical. Although patients with a previous HTO had more complications, no statistically significant differences were noted with this group size.</p

    Influence of Poly(L-Lactic Acid) Nanofibers and BMP-2–Containing Poly(L-Lactic Acid) Nanofibers on Growth and Osteogenic Differentiation of Human Mesenchymal Stem Cells

    Get PDF
    The aim of this study was to characterize synthetic poly-(L-lactic acid) (PLLA) nanofibers concerning their ability to promote growth and osteogenic differentiation of stem cells in vitro, as well as to test their suitability as a carrier system for growth factors. Fiber matrices composed of PLLA or BMP-2–incorporated PLLA were seeded with human mesenchymal stem cells and cultivated over a period of 22 days under growth and osteoinductive conditions, and analyzed during the course of culture, with respect to gene expression of alkaline phosphatase (ALP), osteocalcin (OC), and collagen I (COL-I). Furthermore, COL-I and OC deposition, as well as cell densities and proliferation, were analyzed using fluorescence microscopy. Although the presence of nanofibers diminished the dexamethasone-induced proliferation, there were no differences in cell densities or deposition of either COL-I or OC after 22 days of culture. The gene expression of ALP, OC, and COL-I decreased in the initial phase of cell cultivation on PLLA nanofibers as compared to cover slip control, but normalized during the course of cultivation. The initial down-regulation was not observed when BMP-2 was directly incorporated into PLLA nanofibers by electrospinning, indicating that growth factors like BMP-2 might survive the spinning process in a bioactive form

    Primary pyogenic spondylitis following kyphoplasty: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Only ten cases of primary pyogenic spondylitis following vertebroplasty have been reported in the literature. To the best of our knowledge, we present the first reported case of primary pyogenic spondylitis and spondylodiscitis caused by kyphoplasty.</p> <p>Case presentation</p> <p>A 72-year old Caucasian man with an osteoporotic compression fracture of the first lumbar vertebra after kyphoplasty developed sensory incomplete paraplegia below the first lumbar vertebra. This was caused by myelon compression following pyogenic spondylitis with a psoas abscess. Computed tomography guided aspiration of the abscess cavity yielded group C <it>Streptococcus</it>. The psoas abscess was percutaneously drained and laminectomy and posterior instrumentation with an internal fixator from the eleventh thoracic vertebra to the fourth lumbar vertebra was performed. In a second operation, corpectomy of the first lumbar vertebra with cement removal and fusion from the twelfth thoracic vertebra to the second lumbar vertebra with a titanium cage was performed. Six weeks postoperatively, the patient was pain free with no neurologic deficits or signs of infection.</p> <p>Conclusion</p> <p>Pyogenic spondylitis is an extremely rare complication after kyphoplasty. When these patients develop recurrent back pain postoperatively, the diagnosis of pyogenic spondylitis must be considered.</p

    Characterization of a PLLA-Collagen I Blend Nanofiber Scaffold with Respect to Growth and Osteogenic Differentiation of Human Mesenchymal Stem Cells

    Get PDF
    The aim of this study was to enhance synthetic poly(L-lactic acid) (PLLA) nanofibers by blending with collagen I (COLI) in order to improve their ability to promote growth and osteogenic differentiation of stem cells in vitro. Fiber matrices composed of PLLA and COLI in different ratios were characterized with respect to their morphology, as well as their ability to promote growth of human mesenchymal stem cells (hMSC) over a period of 22 days. Furthermore, the course of differentiation was analyzed by gene expression of alkaline phosphatase (ALP), osteocalcin (OC), and COLI. The PLLA-COLI blend nanofibers presented themselves with a relatively smooth surface. They were more hydrophilic as compared to PLLA nanofibers alone and formed a gel-like structure with a stable nanofiber backbone when incubated in aqueous solutions. We examined nanofibers composed of different PLLA and COLI ratios. A composition of 4:1 ratio of PLLA:COLI showed the best results. When hMSC were cultured on the PLLA-COLI nanofiber blend, growth as well as osteoblast differentiation (determined as gene expression of ALP, OC, and COLI) was enhanced when compared to PLLA nanofibers alone. Therefore, the blending of PLLA with COLI might be a suitable tool to enhance PLLA nanofibers with respect to bone tissue engineering

    Use of cell-free collagen type I matrix implants for the treatment of small cartilage defects in the knee: clinical and magnetic resonance imaging evaluation

    Get PDF
    Abstract Purpose Articular cartilage defects of the knee are a common condition for which several repair techniques have been described. The aim of the present study was to assess medium-term results of a one-step procedure using a cell-free collagen type I matrix. Methods Fifteen patients with articular cartilage defects of the knee were treated with an 11-mm-diameter cell-free collagen type 1 matrix implant. The matrices were implanted in a press-fit manner into the defect after careful debridement down to the subchondral bone but without penetration of this margin. Follow-up examinations were carried out at 6 weeks, 6 months, and at 12, 24, 36, and 48 months after implantation. Clinical assessment included the visual analogue scale (VAS), the Tegner activity scale, and the International Knee Documentation Committee (IKDC) score. Radiological assessment for graft attachment and tissue regeneration was performed using the magnetic observation of cartilage repair tissue (MOCART) score. Results A total of 15 patients (males: n = 6 and females: n = 9) with a mean age of 26.4 years (range 19-40) were treated. The mean VAS improved significantly when compared to the preoperative values (P \ 0.05). Six weeks after implantation, IKDC values were slightly lower than the preoperative values (n.s.), but increased significantly at final follow-up (P \ 0.05). At 24 months, there were no significant differences in the median Tegner score between the post-operative values and the preoperative values (n.s.). However, after 36 months, a significant improvement was noted that lasted at least up to 48 months (P \ 0.05). The MOCART score improved consistently up to 4 years after implantation, with significant improvements already observed after 12 months (P \ 0.05). No correlation between the clinical scores and the MOCART score could be perceived. Conclusion The present study showed that the use of cellfree collagen type I matrix implants led to a significant and durable improvement in all the clinical and imaging scores investigated 4 years after implantation. Level of evidence IV
    corecore