211 research outputs found

    Relativistic magnetotransport in graphene

    Get PDF
    We study the thermal and electric transport of a fluid of interacting Dirac fermions as they arise in single-layer graphene. We include Coulomb interactions, a dilute density of charged impurities and the presence of a magnetic field to describe both the static and the low frequency response as a function of temperature T and chemical potential mu. In the critical regime mu << T where both bands above and below the Dirac point contribute to transport we find pronounced deviations from Fermi liquid behavior, universal, collision-dominated values for transport coefficients and a cyclotron resonance of collective nature. In the collision-dominated high temperature regime the linear thermoelectric transport coefficients are shown to obey the constraints of relativistic magnetohydrodynamics which we derive microscopically from Boltzmann theory. The latter also allows us to describe the crossover to disorder-dominated Fermi liquid behavior at large doping and low temperatures, as well as the crossover to the ballistic regime at high fields.Comment: Proceedings of the Landau Memorial Conference 200

    Internal dynamics of the 3-Pyrroline-N-Oxide ring in spin-labeled proteins

    Get PDF
    Site-directed spin labeling is a versatile tool to study structure as well as dynamics of proteins using EPR spectroscopy. Methanethiosulfonate (MTS) spin labels tethered through a disulfide linkage to an engineered cysteine residue were used in a large number of studies to extract structural as well as dynamic information on the protein from the rotational dynamics of the nitroxide moiety. The ring itself was always considered to be a rigid body. In this contribution, we present a combination of high-resolution X-ray crystallography and EPR spectroscopy of spin-labeled protein single crystals demonstrating that the nitroxide ring inverts fast at ambient temperature while exhibiting nonplanar conformations at low temperature. We have used quantum chemical calculations to explore the potential energy that determines the ring dynamics as well as the impact of the geometry on the magnetic parameters probed by EPR spectroscopy

    Printed Thin Magnetic Films via Ternary Hybrid Diblock Copolymer Films Containing Magnetic Iron Oxide and Nickel Nanoparticles

    Get PDF
    Ternary hybrid thin films composed of a diblock copolymer templating two types of nanoparticles (NPs) expand the functionality of binary systems, which renders them interesting for magnetic sensing or magnetic data storage applications. Herein, one-pot slot-die printed hybrid polystyrene-block-poly­(methyl methacrylate) (PS-b-PMMA) thin films are prepared with iron oxide (magnetite, Fe₃O₄, d = 20 nm) and nickel NPs (Ni, d = 46 nm) in one step by the advanced slot-die coating technique, which facilitates upscaling of fabrication. The evolution of the hybrid film morphology is probed with in situ grazing-incidence small-angle X-ray scattering and compared to that of a PS-b-PMMA thin film without NPs. Additionally, scanning electron microscopy and atomic force microscopy are used to analyze the surface morphology of hybrid films with an increasing NP content after deposition. It is found that different from the pure PS-b-PMMA thin film drying kinetics with five stages, the ternary hybrid film formation can be divided into four stages that are attributed first to the wet film, solvent evaporation, a subsequent rapid coalescence and microphase separation, and finally the dry film. The magnetic properties of the hybrid thin films are investigated with a superconducting quantum interference device magnetometer. All hybrid films are ferrimagnetic and with increasing nickel weight percent in the hybrid film, while the iron oxide weight percent is kept constant, the magnetic properties of the film are modulated accordingly

    Stratification in systemic sclerosis according to autoantibody status versus skin involvement: a study of the prospective EUSTAR cohort

    Get PDF
    Background: The current subclassification of systemic sclerosis into cutaneous subtypes does not fully capture the heterogeneity of the disease. We aimed to compare the performances of stratification into LeRoy's cutaneous subtypes versus stratification by autoantibody status in systemic sclerosis. Methods: For this cohort study, we assessed people with systemic sclerosis in the multicentre international European Scleroderma Trials and Research (EUSTAR) database. Individuals positive for systemic-sclerosis autoantibodies of two specificities were excluded, and remaining individuals were classified by cutaneous subtype, according to their systemic sclerosis-specific autoantibodies, or both. We assessed the performance of each model to predict overall survival, progression-free survival, disease progression, and different organ involvement. The three models were compared by use of the area under the curve (AUC) of the receiver operating characteristic and the net reclassification improvement (NRI). Missing data were imputed. Findings: We assessed the database on July 26, 2019. Of 16 939 patients assessed for eligibility, 10 711 patients were included: 1647 (15·4%) of 10 709 were male, 9062 (84·6%) were female, mean age was 54·4 (SD 13·8) years, and mean disease duration was 7·9 (SD 8·2) years. Information regarding cutaneous subtype was available for 10 176 participants and antibody data were available for 9643 participants. In the prognostic analysis, there was no difference in AUC for overall survival (0·82, 95% CI 0·81-0·84 for cutaneous only vs 0·84, 0·82-0·85 for antibody only vs 0·84, 0·83-0·86 for combined) or for progression-free survival (0·70, 0·69-0·71 vs 0·71, 0·70-0·72 vs 0·71, 0·70-0·72). However, at 4 years the NRI showed substantial improvement for the antibody-only model compared with the cutaneous-only model in prediction of overall survival (0·57, 0·46-0·71 for antibody only vs 0·29, 0·19-0·39 for cutaneous only) and disease progression (0·36, 0·29-0·46 vs 0·21, 0·14-0·28). The antibody-only model did better than the cutaneous-only model in predicting renal crisis (AUC 0·72, 0·70-0·74 for antibody only vs 0·66, 0·64-0·69 for cutaneous only) and lung fibrosis leading to restrictive lung function (AUC 0·76, 0·75-0·77 vs 0·71, 0·70-0·72). The combined model improved the prediction of digital ulcers and elevated systolic pulmonary artery pressure, but did poorly for cardiac involvement. Interpretation: The autoantibody-only model outperforms cutaneous-only subsetting for risk stratifying people with systemic sclerosis in the EUSTAR cohort. Physicians should be aware of these findings at the time of decision making for patient management. Funding: World Scleroderma Foundation

    Neurocognitive dysfunction in adolescents with recent onset major depressive disorder: a cross-sectional comparative study

    Get PDF
    The aim of this study was to examine the neurocognitive deficits associated with the first episode of major depressive disorder (recent onset depression, ROD) in adolescents as compared to adult patients. Cross-sectional neurocognitive data from the baseline assessments of the PRONIA study with N = 650 (55.31% females) were analyzed. Based on a principal component analysis of eleven neurocognitive tests, we constructed an overall neurocognitive performance (NP) score. We examined mean score differences in NP between the groups of healthy controls (HC) and ROD and between adolescents (15–21&nbsp;years) and adults (22–40&nbsp;years) within a GLM approach. This accounts for unbalanced data with focus on interaction effects while controlling for effects of medication and educational years. Our results show lower NP for the ROD as compared to the HC group (d = −&nbsp;0.29, p =.046) and lower NP for the adolescent group as compared to the adult group (d = −&nbsp;0.29; p &lt;.039). There was no interaction between these two group effects (F = 1.11; p =.29). Our findings suggest that the detrimental effect of ROD on neurocognitive functioning is comparable in adolescent and adult patients, since lower scores in adolescent patients are explained by effects of age and education. Neurocognitive impairment is an under addressed issue in clinical treatment guidelines for adolescent MDD. We suggest efficient monitoring in clinical practice by using an aggregate of the Digit Symbol Substitution Test and the Trail Making Test B, which highly correlated with the overall score of NP (r = 0.82)

    Genomics yields biological and phenotypic insights into bipolar disorder

    Get PDF
    Bipolar disorder is a leading contributor to the global burden of disease(1). Despite high heritability (60-80%), the majority of the underlying genetic determinants remain unknown(2). We analysed data from participants of European, East Asian, African American and Latino ancestries (n=158,036 cases with bipolar disorder, 2.8 million controls), combining clinical, community and self-reported samples. We identified 298 genome-wide significant loci in the multi-ancestry meta-analysis, a fourfold increase over previous findings(3), and identified an ancestry-specific association in the East Asian cohort. Integrating results from fine-mapping and other variant-to-gene mapping approaches identified 36 credible genes in the aetiology of bipolar disorder. Genes prioritized through fine-mapping were enriched for ultra-rare damaging missense and protein-truncating variations in cases with bipolar disorder(4), highlighting convergence of common and rare variant signals. We report differences in the genetic architecture of bipolar disorder depending on the source of patient ascertainment and on bipolar disorder subtype (type I or type II). Several analyses implicate specific cell types in the pathophysiology of bipolar disorder, including GABAergic interneurons and medium spiny neurons. Together, these analyses provide additional insights into the genetic architecture and biological underpinnings of bipolar disorder

    LHCb upgrade software and computing : technical design report

    Get PDF
    This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis

    Individual and combined effects of chemical and mechanical power on postoperative pulmonary complications: a secondary analysis of the REPEAT study

    Get PDF
    Introduction: Intra-operative supplemental oxygen and mechanical ventilation expose the lungs to potentially injurious energy. This can be quantified as 'chemical power' and 'mechanical power', respectively. In this study, we sought to determine if intra-operative chemical and mechanical power, individually and/or in combination, are associated with postoperative pulmonary complications. Methods: Using an individual patient data analysis of three randomised clinical trials of intra-operative ventilation, we summarised intra-operative chemical and mechanical power using time-weighted averages. We evaluated the association between intra-operative chemical and mechanical power and a collapsed composite of postoperative pulmonary complications using multivariable logistic regression to estimate the odds ratios related to the effect of 1 J.min-1 increase in chemical or mechanical power with adjustment for demographic and intra-operative characteristics. We also included an interaction term to assess for potential synergistic effects of chemical and mechanical power on postoperative pulmonary complications. Results: Of 3837 patients recruited to three individual trials, 2492 with full datasets were included in the analysis. Intra-operative time-weighted average (SD) chemical power was 10.2 (3.9) J.min-1 and mechanical power was 10.5 (4.4) J.min-1. An increase of 1 J.min-1 in chemical power was associated with 8% higher odds of postoperative pulmonary complications (OR 1.08, 95%CI 1.05-1.10, p &lt; 0.001), while the same increase in mechanical power raised odds by 5% (OR 1.05, 95%CI 1.02-1.08, p = 0.003). We did not find evidence of a significant interaction between chemical and mechanical power (p = 0.40), suggestive of an additive rather than synergistic effect on postoperative pulmonary complications. Discussion: Both chemical and mechanical power are independently associated with postoperative pulmonary complications. Further work is required to determine causality

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    Get PDF
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034 cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → μ+μ−)/B(Bs → μ+μ−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier
    corecore