9,900 research outputs found
Ethical dimensions of ocean governance
On this essay in honour of Elisabeth Mann-Borgese, by analyzing the Ethical Dimensions of Ocean Governance, we explore the ethical principles behind one of her most relevant gifts for the Oceans and society: the promotion of the common heritage of mankind concept at UNCLOS. Her work, together with other important personalities, was imbued of deep ethical roots, whichever the main ethical schools one might choose, from Ancient Greeks to modern days. She can be considered one of those rare people earning the higher level and stage of ethical adequacy. Furthermore, she made us aware that we need a solid scientific knowledge if we want to establish a proper Ocean Governance to promote society to the next level, while it is clear that only Ethics will keep us there. To do so, not just the well-being of humankind has to be pursued, but also the wealth of all life forms and the systems that sustain them in good shape, in order to give for future generations, and us, the opportunity of enjoying the Oceans.Fil: Marone, Eduardo. Universidade Federal do Paraná; BrasilFil: Marone, Luis. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentin
Laboratory observations of permeability enhancement by fluid pressure oscillation of in situ fractured rock
We report on laboratory experiments designed to investigate the influence of pore pressure oscillations on the effective permeability of fractured rock. Berea sandstone samples were fractured in situ under triaxial stresses of tens of megapascals, and deionized water was forced through the incipient fracture under conditions of steady and oscillating pore pressure. We find that short-term pore pressure oscillations induce long-term transient increases in effective permeability of the fractured samples. The magnitude of the effective permeability enhancements scales with the amplitude of pore pressure oscillations, and changes persist well after the stress perturbation. The maximum value of effective permeability enhancement is 5 × 10^(−16) m^2 with a background permeability of 1 × 10^(−15) m^2; that is, the maximum enhanced permeability is 1.5 × 10^(−15) m^2. We evaluate poroelastic effects and show that hydraulic storage release does not explain our observations. Effective permeability recovery following dynamic oscillations occurs as the inverse square root of time. The recovery indicates that a reversible mechanism, such as clogging/unclogging of fractures, as opposed to an irreversible one, like microfracturing, is responsible for the transient effective permeability increase. Our work suggests the feasibility of dynamically controlling the effective permeability of fractured systems. The result has consequences for models of earthquake triggering and permeability enhancement in fault zones due to dynamic shaking from near and distant earthquakes
Acoustically-induced slip in sheared granular layers: application to dynamic earthquake triggering
A fundamental mystery in earthquake physics is ``how can an earthquake be
triggered by distant seismic sources?'' Here, we use discrete element method
simulations of a granular layer, during stick-slip, that is subject to
transient vibrational excitation to gain further insight into the physics of
dynamic earthquake triggering. Using Coulomb friction law for grains
interaction, we observe delayed triggering of slip in the granular gouge. We
find that at a critical vibrational amplitude (strain) there is an abrupt
transition from negligible time-advanced slip (clock advance) to full clock
advance, {\it i.e.}, transient vibration and triggered slip are simultaneous.
The critical strain is order of , similar to observations in the
laboratory and in Earth. The transition is related to frictional weakening of
the granular layer due to a dramatic decrease in coordination number and the
weakening of the contact force network. Associated with this frictional
weakening is a pronounced decrease in the elastic modulus of the layer. The
study has important implications for mechanisms of triggered earthquakes and
induced seismic events and points out the underlying processes in response of
the fault gouge to dynamic transient stresses
On the evolution of elastic properties during laboratory stick-slip experiments spanning the transition from slow slip to dynamic rupture
The physical mechanisms governing slow earthquakes remain unknown, as does the
relationship between slow and regular earthquakes. To investigate the mechanism(s) of slow earthquakes
and related quasi-dynamic modes of fault slip we performed laboratory experiments on simulated fault
gouge in the double direct shear configuration. We reproduced the full spectrum of slip behavior, from slow
to fast stick slip, by altering the elastic stiffness of the loading apparatus (k) to match the critical rheologic
stiffness of fault gouge (kc). Our experiments show an evolution from stable sliding, when k>kc, to
quasi-dynamic transients when k ~ kc, to dynamic instabilities when k<kc. To evaluate the microphysical
processes of fault weakening we monitored variations of elastic properties. We find systematic changes in P
wave velocity (Vp) for laboratory seismic cycles. During the coseismic stress drop, seismic velocity drops
abruptly, consistent with observations on natural faults. In the preparatory phase preceding failure, we find
that accelerated fault creep causes a Vp reduction for the complete spectrum of slip behaviors. Our results
suggest that the mechanics of slow and fast ruptures share key features and that they can occur on same
faults, depending on frictional properties. In agreement with seismic surveys on tectonic faults our data show
that their state of stress can be monitored by Vp changes during the seismic cycle. The observed reduction in
Vp during the earthquake preparatory phase suggests that if similar mechanisms are confirmed in nature
high-resolution monitoring of fault zone properties may be a promising avenue for reliable detection of
earthquake precursors
Diffraction dissociation in proton-proton collisions at = 0.9 TeV, 2.76 TeV and 7 TeV with ALICE at the LHC
The relative rates of single- and double- diffractive processes were measured
with the ALICE detector by studying properties of gaps in the pseudorapidity
distribution of particles produced in proton-proton collisions at =
0.9 TeV, 2.76 TeV and 7 TeV. ALICE triggering efficiencies are determined for
various classes of events, using a detector simulation validated with data on
inclusive particle production. Cross-sections are determined using van der Meer
scans to measure beam properties and obtain a measurement of the luminosity
Earthquake focal mechanisms and stress orientations in the eastern Swiss Alps
This study presents an updated set of earthquake focal mechanisms in the Helvetic and Penninic/Austroalpine domains of the eastern Swiss Alps. In eight cases, based on high-precision relative hypocentre locations of events within individual earthquake sequences, it was possible to identify the active fault plane. Whereas the focal mechanisms in the Helvetic domain are mostly strike-slip, the Penninic/Austroalpine domain is dominated by normal-faulting mechanisms. Given this systematic difference in faulting style, an inversion for the stress field was performed separately for the two regions. The stress field in the Penninic/Austroalpine domain is characterized by extension oriented obliquely to the E-W strike of the orogen. Hence, the Penninic nappes, which were emplaced as large-scale compressional structures during the Alpine orogenesis, are now deforming in an extensional mode. This contrasts with the more compressional strike-slip regime in the Helvetic domain towards the northern Alpine front. Relative to the regional stress field seen in the northern Alpine foreland with a NNW-SSE compression and an ENE-WSW extension, the orientation of the least compressive stress in the Penninic/Austroalpine domain is rotated counter-clockwise by about 40°. Following earlier studies, the observed rotation of the orientation of the least compressive stress in the Penninic/Austroalpine region can be explained as the superposition of the regional stress field of the northern foreland and a uniaxial extensional stress perpendicular to the local trend of the Alpine mountain bel
- …
