2,586 research outputs found
Sulfur loss from subducted altered oceanic crust and implications for mantle oxidation
© The Author(s), [year]. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Walters, J. B., Cruz-Uribe, A. M., & Marschall, H. R. Sulfur loss from subducted altered oceanic crust and implications for mantle oxidation. Geochemical Perspectives Letters, 13, (2020): 36-41, doi:10.7185/geochemlet.2011.Oxygen fugacity (fO2) is a controlling factor of the physics of Earth’s mantle; however, the mechanisms driving spatial and secular changes in fO2 associated with convergent margins are highly debated. We present new thermodynamic models and petrographic observations to predict that oxidised sulfur species are produced during the subduction of altered oceanic crust. Sulfur loss from the subducting slab is a function of the protolith Fe3+/ΣFe ratio and subduction zone thermal structure, with elevated sulfur fluxes predicted for oxidised slabs in cold subduction zones. We also predict bi-modal release of sulfur-bearing fluids, with a low volume shallow flux of reduced sulfur followed by an enhanced deep flux of sulfate and sulfite species, consistent with oxidised arc magmas and associated copper porphyry deposits. The variable SOx release predicted by our models both across and among active margins may introduce fO2 heterogeneity to the upper mantle.We thank James Connolly for modelling support and Peter van Keken for providing updated P–T paths for the Syracuse et al. (2010) models. The manuscript benefited from the editorial handling by Helen Williams and from constructive reviews of Maryjo Brounce, Katy Evans, and an anonymous reviewer. JBW acknowledges Fulbright and Chase Distinguished Research fellowships. This work was supported by NSF grant EAR1725301 awarded to AMC
Applying antibodies inside cells: Principles and recent advances in neurobiology, virology and oncology
To interfere with cell function, many scientists rely on methods that target DNA or RNA due to the ease with which they can be applied. Proteins are usually the final executors of function but are targeted only indirectly by these methods. Recent advances in targeted degradation of proteins based on proteolysis-targeting chimaeras (PROTACs), ubiquibodies, deGradFP (degrade Green Fluorescent Protein) and other approaches have demonstrated the potential of interfering directly at the protein level for research and therapy. Proteins can be targeted directly and very specifically by antibodies, but using antibodies inside cells has so far been considered to be challenging. However, it is possible to deliver antibodies or other proteins into the cytosol using standard laboratory equipment. Physical methods such as electroporation have been demonstrated to be efficient and validated thoroughly over time. The expression of intracellular antibodies (intrabodies) inside cells is another way to interfere with intracellular targets at the protein level. Methodological strategies to target the inside of cells with antibodies, including delivered antibodies and expressed antibodies, as well as applications in the research areas of neurobiology, viral infections and oncology, are reviewed here. Antibodies have already been used to interfere with a wide range of intracellular targets. Disease-related targets included proteins associated with neurodegenerative diseases such as Parkinson's disease (α-synuclein), Alzheimer's disease (amyloid-β) or Huntington's disease (mutant huntingtin [mHtt]). The applications of intrabodies in the context of viral infections include targeting proteins associated with HIV (e.g. HIV1-TAT, Rev, Vif, gp41, gp120, gp160) and different oncoviruses such as human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV) and Epstein-Barr virus, and they have been used to interfere with various targets related to different processes in cancer, including oncogenic pathways, proliferation, cell cycle, apoptosis, metastasis, angiogenesis or neo-antigens (e.g. p53, human epidermal growth factor receptor-2 [HER2], signal transducer and activator of transcription 3 [STAT3], RAS-related RHO-GTPase B (RHOB), cortactin, vascular endothelial growth factor receptor 2 [VEGFR2], Ras, Bcr-Abl). Interfering at the protein level allows questions to be addressed that may remain unanswered using alternative methods. This review addresses why direct targeting of proteins allows unique insights, what is currently feasible in vitro, and how this relates to potential therapeutic applications
The Cost of Dispersal: Predation as a Function of Movement and Site Familiarity in Ruffed Grouse
Ecologists often assume that dispersing individuals experience increased predation risk owing to increased
exposure to predators while moving. To test the hypothesis that predation risk is a function of movement distance or
rate of movement, we used radio-telemetry data collected from 193 ruffed grouse (Bonasa umbellus) during 1996–1999 in southeastern Ohio. Cox’s proportional hazards model was used to examine whether the risk of predation
was affected by the rate of movement and site familiarity. We found evidence indicating that increased movement
rates may increase the risk of predation for adult birds but not juveniles. We also found juvenile and adult birds
inhabiting unfamiliar space were consistently at a much higher risk of predation (three to 7.5 times greater) than
those in familiar space. Our results indicate that although movement itself may have some effect on the risk of being
preyed upon, moving through unfamiliar space has a much greater effect on risk for ruffed grouse. This supports the
hypothesis that increased predation risk may be an important cost of dispersal for birds.This work was funded by the Ohio Department of Natural Resources, Division of Wildlife and supported by the Department of Evolution,
Ecology, and Organismal Biology and the Aquatic Ecology Laboratory at the Ohio State University
Disseminated Tuberculosis Following Total Knee Arthroplasty in an HIV Patient
Skeletal tuberculosis is now uncommon in developed countries. In immunocompromised patients - particularly in the HIV-infected - who present with subacute or chronic joint pain refractory to conventional treatment, osteoarticular tuberculosis should still be included in the differential diagnosis. We report on a lethal case of disseminated tuberculosis in an HIV-infected subject. Dissemination may have resulted from the implantation of an articular prosthesis in a knee joint with unsuspected osteoarticular tuberculosis. The diagnosis was established months later when the patient presented with far-advanced tuberculous meningitis, miliary tuberculosis of the lungs, femoral osteomyelitis and extended cold abscesses along the femoral shaft. Failure to respond to a conventional four-drug regimen is explained by the resistance pattern of his multi-drug resistant strain of Mycobacterium tuberculosis, which was only reported after the patient's death. This case illustrates the diagnostic challenges of osteoarticular tuberculosis and the consequences of a diagnostic delay in an HIV-infected individua
Effects of fluid-rock interaction on Ar-40/Ar-39 geochronology in high-pressure rocks (Sesia-Lanzo Zone, Western Alps)
In situ UV laser spot 40Ar/39Ar analyses of distinct phengite types in eclogite-facies rocks from the Sesia-Lanzo Zone (Western Alps, Italy) were combined with SIMS boron isotope analyses as well as boron (B) and lithium (Li) concentration data to link geochronological information with constraints on fluid–rock interaction. In weakly deformed samples, apparent 40Ar/39Ar ages of phengite cores span a range of ∼20 Ma, but inverse isochrons define two distinct main high-pressure (HP) phengite core crystallization periods of 88–82 and 77–74 Ma, respectively. The younger cores have on average lower B contents (∼36 μg/g) than the older ones (∼43–48 μg/g), suggesting that loss of B and resetting of the Ar isotopic system were related. Phengite cores have variable δ11B values (−18‰ to −10‰), indicating the lack of km scale B homogenization during HP crystallization.
Overprinted phengite rims in the weakly deformed samples generally yield younger apparent 40Ar/39Ar ages than the respective cores. They also show variable effects of heterogeneous excess 40Ar incorporation and Ar loss. One acceptable inverse isochron age of 77.1 ± 1.1 Ma for rims surrounding older cores (82.6 ± 0.6 Ma) overlaps with the second period of core crystallization. Compared to the phengite cores, all rims have lower B and Li abundances but similar δ11B values (−15‰ to −9‰), reflecting internal redistribution of B and Li and internal fluid buffering of the B isotopic composition during rim growth. The combined observation of younger 40Ar/39Ar ages and boron loss, yielding comparable values of both parameters only in cores and rims of different samples, is best explained by a selective metasomatic overprint. In low permeability samples, this overprint caused recrystallization of phengite rims, whereas higher permeability in other samples led to complete recrystallization of phengite grains.
Strongly deformed samples from a several km long, blueschist-facies shear zone contain mylonitic phengite that forms a tightly clustered group of relatively young apparent 40Ar/39Ar ages (64.7–68.8 Ma), yielding an inverse isochron age of 65.0 ± 3.0 Ma. Almost complete B and Li removal in mylonitic phengite is due to leaching into a fluid. The B isotopic composition is significantly heavier than in phengites from the weakly deformed samples, indicating an external control by a high-δ11B fluid (δ11B = +7 ± 4‰). We interpret this result as reflecting phengite recrystallization related to deformation and associated fluid flow in the shear zone. This event also caused partial resetting of the Ar isotope system and further B loss in more permeable rocks of the adjacent unit. We conclude that geochemical evidence for pervasive or limited fluid flow is crucial for the interpretation of 40Ar/39Ar data in partially metasomatized rocks
New Rotation Periods in the Pleiades: Interpreting Activity Indicators
We present results of photometric monitoring campaigns of G, K and M dwarfs in the Pleiades carried out in 1994, 1995 and 1996. We have determined rotation periods for 18 stars in this cluster. In this paper, we examine the validity of using observables such as X-ray activity and amplitude of photometric variations as indicators of angular momentum loss. We report the discovery of cool, slow rotators with high amplitudes of variation. This contradicts previous conclusions about the use of amplitudes as an alternate diagnostic of the saturation of angular momentum loss. We show that the X-ray data can be used as observational indicators of mass-dependent saturation in the angular momentum loss proposed on theoretical grounds
- …
