1,451 research outputs found
Are There Diquarks in the Nucleon?
This work is devoted to the study of diquark correlations inside the nucleon.
We analyze some matrix elements which encode information about the
non-perturbative forces, in different color anti-triplet diquark channels. We
suggest a lattice calculation to check the quark-diquark picture and clarify
the role of instanton-mediated interactions. We study in detail the physical
properties of the 0+ diquark, using the Random Instanton Liquid Model. We find
that instanton forces are sufficiently strong to form a diquark bound-state,
with a mass of ~500 MeV, which is compatible with earlier estimates. We also
compute its electro-magnetic form factor and find that the diquark is a broad
object, with a size comparable with that of the proton.Comment: Final version, accepted for publication on Phys. Rev.
Impact of Satellite Sea Surface Salinity Observations on ENSO Predictions from the NASA/GMAO Seasonal Forecast System
We assess the impact of satellite sea surface salinity (SSS) observations on dynamical ENSO forecasts. Assimilation of SSS improves the mixed layer depth (MLD) and modulates the Kelvin waves associated with ENSO. In column 2, the initialization differences between experiments that assimilate SSS minus those withholding SSS assimilation are presented. Column 3 shows examples of forecasts generated for the different phases of ENSO assimilating the different satellite SSS. In general, for all phases of ENSO, SSS assimilation improves forecasts. The far right column compares ensemble means for assimilation of individual and combined SMOS, Aquarius, and SMAP SSS forecasts. Finally, the latest forecasts are presented comparing assimilation versus no- assimilation of satellite SSS for single forecasts over the last year
The Symmetries of Nature
The study of the symmetries of nature has fascinated scientists for eons. The application of the formal mathematical description of
symmetries during the last century has produced many breakthroughs in
our understanding of the substructure of matter. In this talk, a number
of these advances are discussed, and the important role that George
Sudarshan played in their development is emphasize
Identification of a Nerve Growth Factor-Regulated and Epidermal Growth Factor-Regulated Protein-Kinase That Phosphorylates the Protooncogene Product C-Fos
Nerve growth factor (NGF) treatment of rat pheochromocytoma (PC12) cells induces the synthesis of the transcription factor c-Fos, which becomes highly phosphorylated relative to that produced as a result of depolarization of the cell. A peptide derived from the carboxyl terminus of c-Fos (residues 359-370, RKGSSSNEPSSD) containing putative phosphorylation sites was used to detect a NGF-stimulated Fos kinase. NGF treatment of PC12 cells resulted in a rapid activation of a protein kinase which phosphorylated both the c-Fos peptide and authentic c-Fos at its carboxyl terminus. The kinase was selectively activated by NGF and epidermal growth factor but was not induced by depolarization or other agents. The c-Fos peptide was phosphorylated at a serine corresponding to Ser362, a site critically implicated in the capacity of c-Fos to exhibit transrepressive activity [Ofir, R., Dwarki, V. J., Rashid, D. & Verma, I. M. (1990) Nature (London) 348, 80-82)]. The NGF-stimulated Fos kinase may play an important role in regulating the expression and transforming potential of c-Fos
Charm meson resonances in decays
Motivated by recent experimental results we reconsider semileptonic decays within a model which combines heavy quark symmetry and
properties of the chiral Lagrangian. We include excited charm meson states,
some of them recently observed, in our Lagrangian and determine their impact on
the charm meson semileptonic form factors. We find that the inclusion of
excited charm meson states in the model leads to a rather good agreement with
the experimental results on the shape of the form factor. We
also calculate branching ratios for all decays.Comment: 9 pages, 4 figures; minor corrections, added some discussion, version
as publishe
Extended-soft-core Baryon-Baryon Model II. Hyperon-Nucleon Interaction
The YN results are presented from the Extended-soft-core (ESC) interactions.
They consist of local- and non-local-potentials due to (i) One-boson-exchange
(OBE), with pseudoscalar-, vector-, scalar-, and axial-vector-nonets, (ii)
Diffractive exchanges, (iii) Two-pseudoscalar exchange, and (iv)
Meson-pair-exchange (MPE). This model, called ESC04, describes NN and YN in a
unified way using broken flavor SU(3)-symmetry. Novel ingredients are the
inclusion of (i) the axial-vector-mesons, (ii) a zero in the scalar- and
axial-vector meson form factors. We describe simultaneous fits to the NN- and
YN-data, using four options in the ESC-model. Very good fits were obtained.
G-matrix calculations with these four options are also reported. The obtained
well depths (U_\Lambda, U_\Sigma, U_\Xi) reveal distinct features of ESC04a-d.
The \Lambda\Lambda-interactions are demonstrated to be consistent with the
observed data of_{\Lambda\Lambda}^6He. The possible three-body effects are
investigated by considering phenomenologically the changes of the vector-meson
masses in a nuclear medium.Comment: preprint vesion 66 pages, two-column version 27 pages, 17 figure
Impact of Satellite Sea Surface Salinity Observations on ENSO Predictions from the GMAO S2S Forecast System
El Nino/Southern Oscillation (ENSO) has far reaching global climatic impacts and so extending useful ENSO forecasts would be of great benefit for society. However, one key variable that has yet to be fully exploited within coupled forecast systems is accurate estimation of near-surface ocean density. Satellite Sea Surface Salinity (SSS), combined with temperature, help to identify ocean density changes and associated mixing near the ocean surface. We assess the impact of satellite SSS observations for improving near-surface dynamics within ocean analyses and how these impact dynamical ENSO forecasts using the NASA GMAO (Global Modeling and Assimilation Office) Sub-seasonal to Seasonal (S2S_v2.1) coupled forecast system (Molod et al. 2018 - i.e. NASA's contribution to the NMME (National Multi-Model Ensemble) project). For all initialization experiments, all available along-track absolute dynamic topography and in situ observations are assimilated using the LETKF ( Local Ensemble Transform Kalman Filter) scheme similar to Penny et al., 2013. A separate reanalysis additionally assimilates Aquarius V5 (September 2011 to June 2015) and SMAP (Soil Moisture Active Passive) V4 (March 2015 to present) along-track data.We highlight the impact of satellite SSS on ocean reanalyses by comparing validation statistics of experiments that assimilate SSS versus our current prediction system that withholds SSS. We find that near-surface validation versus observed statistics for salinity are slightly degraded when assimilating SSS. This is an expected result due to known biases between SSS (measured by the satellite at approximately 1 centimeter) and in situ measurements (typically measured by Argo floats at 3 meters). On the other hand, a very encouraging result is that both temperature, absolute dynamic topography, and mixed layer statistics are improved with SSS assimilation. Previous work has shown that correcting near-surface density structure via gridded SSS assimilation can improve coupled forecasts. Here we present results of coupled forecasts that are initialized from the GMAO S2S reanalyses that assimilates/withholds along-track (L2) SSS. In particular, we contrast forecasts of the overestimated 2014 El Nino, the big 2015 El Nino, and the minor 2016 La Nina. For each of these ENSO scenarios, assimilation of satellite SSS improves the forecast validation. Improved SSS and density upgrades the mixed layer depth leading to more accurate coupled air/sea interaction
Double Type-II Seesaw, Baryon Asymmetry and Dark Matter for Cosmic e^\pm Excesses
We construct a new realization of type-II seesaw for neutrino masses and
baryon asymmetry by extending the standard model with one light and two heavy
singlet scalars besides one Higgs triplet. The heavy singlets pick up small
vacuum expectation values to give a suppressed trilinear coupling between the
triplet and doublet Higgs bosons after the light singlet drives the spontaneous
breaking of lepton number. The Higgs triplet can thus remain light and be
accessible at the LHC. The lepton number conserving decays of the heavy
singlets can generate a lepton asymmetry stored in the Higgs triplet to account
for the matter-antimatter asymmetry in the Universe. We further introduce
stable gauge bosons from a hidden sector, which obtain masses and annihilate
into the Higgs triplet after spontaneous breaking of the associated non-Abelian
gauge symmetry. With Breit-Wigner enhancement, the stable gauge bosons can
simultaneously explain the relic density of dark matter and the cosmic
positron/electron excesses.Comment: 9 pages, 4 figures, minor rewording, final PRD version (in Press
- …
