1,122 research outputs found

    The multiferroic phase of DyFeO3_{3}:an ab--initio study

    Full text link
    By performing accurate ab-initio density functional theory calculations, we study the role of 4f4f electrons in stabilizing the magnetic-field-induced ferroelectric state of DyFeO3_{3}. We confirm that the ferroelectric polarization is driven by an exchange-strictive mechanism, working between adjacent spin-polarized Fe and Dy layers, as suggested by Y. Tokunaga [Phys. Rev. Lett, \textbf{101}, 097205 (2008)]. A careful electronic structure analysis suggests that coupling between Dy and Fe spin sublattices is mediated by Dy-dd and O-2p2p hybridization. Our results are robust with respect to the different computational schemes used for dd and ff localized states, such as the DFT+UU method, the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional and the GW approach. Our findings indicate that the interaction between the ff and dd sublattice might be used to tailor ferroelectric and magnetic properties of multiferroic compounds.Comment: 6 pages, 4 figures-Revised versio

    On the growth of ammonium nitrate(III) crystals

    Get PDF
    The growth rate of NH4NO3 phase III crystals is measured and interpreted using two models. The first is a standard crystal growth model based on a spiral growth mechanism, the second outlines the concept of kinetical roughening. As the crystal becomes rough a critical supersaturation can be determined and from this the step free energy. The step free energy versus temperature turns out to be well represented by a Kosterlitz¿Thouless type model. Further a phenomenological treatment of some peculiar growth observations is given

    Determining the Anisotropic Exchange Coupling of CrO_2 via First-Principles Density Functional Theory Calculations

    Full text link
    We report a study of the anisotropic exchange interactions in bulk CrO_2 calculated from first principles within density functional theory. We determine the exchange coupling energies, using both the experimental lattice parameters and those obtained within DFT, within a modified Heisenberg model Hamiltonian in two ways. We employ a supercell method in which certain spins within a cell are rotated and the energy dependence is calculated and a spin-spiral method that modifies the periodic boundary conditions of the problem to allow for an overall rotation of the spins between unit cells. Using the results from each of these methods, we calculate the spin-wave stiffness constant D from the exchange energies using the magnon dispersion relation. We employ a Monte Carlo method to determine the DFT-predicted Curie temperature from these calculated energies and compare with accepted values. Finally, we offer an evaluation of the accuracy of the DFT-based methods and suggest implications of the competing ferro- and antiferromagnetic interactions.Comment: 10 pages, 13 figure

    The shortcomings of semi-local and hybrid functionals: what we can learn from surface science studies

    Full text link
    A study of the adsorption of CO on late 4d and 5d5d transition metal (111) surfaces (Ru, Rh, Pd, Ag, Os, Ir, and Pt) considering atop and hollow site adsorption is presented. The applied functionals include the gradient corrected PBE and BLYP functional, and the corresponding hybrid Hartree-Fock density functionals HSE and B3LYP. We find that PBE based hybrid functionals (specifically HSE) yield, with the exception of Pt, the correct site order on all considered metals, but they also considerably overestimate the adsorption energies compared to experiment. On the other hand, the semi-local BLYP functional and the corresponding hybrid functional B3LYP yield very satisfactory adsorption energies and the correct adsorption site for all surfaces. We are thus faced with a Procrustean problem: the B3LYP and BLYP functionals seem to be the overall best choice for describing adsorption on metal surfaces, but they simultaneously fail to account well for the properties of the metal, vastly overestimating the equilibrium volume and underestimating the atomization energies. Setting out from these observations, general conclusions are drawn on the relative merits and drawbacks of various semi-local and hybrid functionals. The discussion includes a revised version of the PBE functional specifically optimized for bulk properties and surface energies (PBEsol), a revised version of the PBE functional specifically optimized to predict accurate adsorption energies (rPBE), as well as the aforementioned BLYP functional. We conclude that no semi-local functional is capable to describe all aspects properly, and including non-local exchange also only improves some, but worsens other properties.Comment: 12 pages, 6 figures; to be published in New Journal of Physic

    Maximally localized Wannier functions in LaMnO3 within PBE+U, hybrid functionals, and partially self-consistent GW: an efficient route to construct ab-initio tight-binding parameters for e_g perovskites

    Full text link
    Using the newly developed VASP2WANNIER90 interface we have constructed maximally localized Wannier functions (MLWFs) for the e_g states of the prototypical Jahn-Teller magnetic perovskite LaMnO3 at different levels of approximation for the exchange-correlation kernel. These include conventional density functional theory (DFT) with and without additional on-site Hubbard U term, hybrid-DFT, and partially self-consistent GW. By suitably mapping the MLWFs onto an effective e_g tight-binding (TB) Hamiltonian we have computed a complete set of TB parameters which should serve as guidance for more elaborate treatments of correlation effects in effective Hamiltonian-based approaches. The method-dependent changes of the calculated TB parameters and their interplay with the electron-electron (el-el) interaction term are discussed and interpreted. We discuss two alternative model parameterizations: one in which the effects of the el-el interaction are implicitly incorporated in the otherwise "noninteracting" TB parameters, and a second where we include an explicit mean-field el-el interaction term in the TB Hamiltonian. Both models yield a set of tabulated TB parameters which provide the band dispersion in excellent agreement with the underlying ab initio and MLWF bands.Comment: 30 pages, 7 figure

    NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations

    Get PDF
    We present a benchmark of the density functional linear response calculation of NMR shieldings within the Gauge-Including Projector-Augmented-Wave method against all-electron Augmented-Plane-Wave++local-orbital and uncontracted Gaussian basis set results for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.Comment: 3 figures, supplementary material include

    A method for mechanical generation of radio frequency fields in nuclear magnetic resonance force microscopy

    Get PDF
    We present an innovative method for magnetic resonance force microscopy (MRFM) with ultra-low dissipation, by using the higher modes of the mechanical detector as radio frequency (rf) source. This method allows MRFM on samples without the need to be close to an rf source. Furthermore, since rf sources require currents that give dissipation, our method enables nuclear magnetic resonance experiments at ultra-low temperatures. Removing the need for an on-chip rf source is an important step towards a MRFM which can be widely used in condensed matter physics.Comment: 7 pages, 5 figures, to be submitted to Physical Review Applie
    corecore