1,932 research outputs found
Identification of Showers with Cores Outside the ARGO-YBJ Detector
In any EAS array, the rejection of events with shower cores outside the
detector boundaries is of great importance. A large difference between the true
and the reconstructed shower core positions may lead to a systematic
miscalculation of some shower characteristics. Moreover, an accurate
determination of the shower core position for selected internal events is
important to reconstruct the primary direction using conical fits to the shower
front, improving the detector angular resolution, or to performe an efficient
gamma/hadron discrimination. In this paper we present a procedure able to
identify and reject showers with cores outside the ARGO-YBJ carpet boundaries.
A comparison of the results for gamma and proton induced showers is reported.Comment: 4 pages, to be published in the Proceedings of the 28th International
Cosmic Ray Conference (Tsukuba, Japan 2003
The Networked Common Goods Game
We introduce a new class of games called the networked common goods game
(NCGG), which generalizes the well-known common goods game. We focus on a
fairly general subclass of the game where each agent's utility functions are
the same across all goods the agent is entitled to and satisfy certain natural
properties (diminishing return and smoothness). We give a comprehensive set of
technical results listed as follows.
* We show the optimization problem faced by a single agent can be solved
efficiently in this subclass. The discrete version of the problem is however
NP-hard but admits an fully polynomial time approximation scheme (FPTAS).
* We show uniqueness results of pure strategy Nash equilibrium of NCGG, and
that the equilibrium is fully characterized by the structure of the network and
independent of the choices and combinations of agent utility functions.
* We show NCGG is a potential game, and give an implementation of best/better
response Nash dynamics that lead to fast convergence to an
-approximate pure strategy Nash equilibrium.
* Lastly, we show the price of anarchy of NCGG can be as large as
(for any ), which means selfish behavior
in NCGG can lead to extremely inefficient social outcomes
Ant colony optimisation and local search for bin-packing and cutting stock problems
The Bin Packing Problem and the Cutting Stock Problem are two related classes of NP-hard combinatorial optimization problems. Exact solution methods can only be used for very small instances, so for real-world problems, we have to rely on heuristic methods. In recent years, researchers have started to apply evolutionary approaches to these problems, including Genetic Algorithms and Evolutionary Programming. In the work presented here, we used an ant colony optimization (ACO) approach to solve both Bin Packing and Cutting Stock Problems. We present a pure ACO approach, as well as an ACO approach augmented with a simple but very effective local search algorithm. It is shown that the pure ACO approach can compete with existing evolutionary methods, whereas the hybrid approach can outperform the best-known hybrid evolutionary solution methods for certain problem classes. The hybrid ACO approach is also shown to require different parameter values from the pure ACO approach and to give a more robust performance across different problems with a single set of parameter values. The local search algorithm is also run with random restarts and shown to perform significantly worse than when combined with ACO
Solving Medium-Density Subset Sum Problems in Expected Polynomial Time: An Enumeration Approach
The subset sum problem (SSP) can be briefly stated as: given a target integer
and a set containing positive integer , find a subset of
summing to . The \textit{density} of an SSP instance is defined by the
ratio of to , where is the logarithm of the largest integer within
. Based on the structural and statistical properties of subset sums, we
present an improved enumeration scheme for SSP, and implement it as a complete
and exact algorithm (EnumPlus). The algorithm always equivalently reduces an
instance to be low-density, and then solve it by enumeration. Through this
approach, we show the possibility to design a sole algorithm that can
efficiently solve arbitrary density instance in a uniform way. Furthermore, our
algorithm has considerable performance advantage over previous algorithms.
Firstly, it extends the density scope, in which SSP can be solved in expected
polynomial time. Specifically, It solves SSP in expected time
when density , while the previously best
density scope is . In addition, the overall
expected time and space requirement in the average case are proven to be
and respectively. Secondly, in the worst case, it
slightly improves the previously best time complexity of exact algorithms for
SSP. Specifically, the worst-case time complexity of our algorithm is proved to
be , while the previously best result is .Comment: 11 pages, 1 figur
Stat3 promotes mitochondrial transcription and oxidative respiration during maintenance and induction of naive pluripotency.
Transcription factor Stat3 directs self-renewal of pluripotent mouse embryonic stem (ES) cells downstream of the cytokine leukemia inhibitory factor (LIF). Stat3 upregulates pivotal transcription factors in the ES cell gene regulatory network to sustain naïve identity. Stat3 also contributes to the rapid proliferation of ES cells. Here, we show that Stat3 increases the expression of mitochondrial-encoded transcripts and enhances oxidative metabolism. Chromatin immunoprecipitation reveals that Stat3 binds to the mitochondrial genome, consistent with direct transcriptional regulation. An engineered form of Stat3 that localizes predominantly to mitochondria is sufficient to support enhanced proliferation of ES cells, but not to maintain their undifferentiated phenotype. Furthermore, during reprogramming from primed to naïve states of pluripotency, Stat3 similarly upregulates mitochondrial transcripts and facilitates metabolic resetting. These findings suggest that the potent stimulation of naïve pluripotency by LIF/Stat3 is attributable to parallel and synergistic induction of both mitochondrial respiration and nuclear transcription factors.GM’s laboratory is supported by grants from Armenise-Harvard Foundation and Telethon Foundation (TCP13013). The Cambridge Stem Cell Institute receives core funding from the Wellcome Trust and Medical Research Council. GM was supported by a Human Frontier Science Program Fellowship. AS is a Medical Research Professor.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.15252/embj.20159262
An Analogy between Bin Packing Problem and Permutation Problem: A New Encoding Scheme
Part 2: Knowledge Discovery and SharingInternational audienceThe bin packing problem aims to pack a set of items in a minimum number of bins, with respect to the size of the items and capacity of the bins. This is an NP-hard problem. Several approach methods have been developed to solve this problem. In this paper, we propose a new encoding scheme which is used in a hybrid resolution: a metaheuristic is matched with a list algorithm (Next Fit, First Fit, Best Fit) to solve the bin packing problem. Any metaheuristic can be used but in this paper, our proposition is implemented on a single solution based metaheuristic (stochastic descent, simulated annealing, kangaroo algorithm). This hybrid method is tested on literature instances to ensure its good results
A database of microRNA expression patterns in Xenopus laevis
MicroRNAs (miRNAs) are short, non-coding RNAs around 22 nucleotides long. They inhibit gene expression either by translational repression or by causing the degradation of the mRNAs they bind to. Many are highly conserved amongst diverse organisms and have restricted spatio-temporal expression patterns during embryonic development where they are thought to be involved in generating accuracy of developmental timing and in supporting cell fate decisions and tissue identity. We determined the expression patterns of 180 miRNAs in Xenopus laevis embryos using LNA oligonucleotides. In addition we carried out small RNA-seq on different stages of early Xenopus development, identified 44 miRNAs belonging to 29 new families and characterized the expression of 5 of these. Our analyses identified miRNA expression in many organs of the developing embryo. In particular a large number were expressed in neural tissue and in the somites. Surprisingly none of the miRNAs we have looked at show expression in the heart. Our results have been made freely available as a resource in both XenMARK and Xenbase
First results of the air shower experiment KASCADE
The main goals of the KASCADE (KArlsruhe Shower Core and Array DEtector)
experiment are the determination of the energy spectrum and elemental
composition of the charged cosmic rays in the energy range around the knee at
ca. 5 PeV. Due to the large number of measured observables per single shower a
variety of different approaches are applied to the data, preferably on an
event-by-event basis. First results are presented and the influence of the
high-energy interaction models underlying the analyses is discussed.Comment: 3 pages, 3 figures included, to appear in the TAUP 99 Proceedings,
Nucl. Phys. B (Proc. Suppl.), ed. by M. Froissart, J. Dumarchez and D.
Vignau
Muon Energy Estimate Through Multiple Scattering with the Macro Detector
Muon energy measurement represents an important issue for any experiment
addressing neutrino induced upgoing muon studies. Since the neutrino
oscillation probability depends on the neutrino energy, a measurement of the
muon energy adds an important piece of information concerning the neutrino
system. We show in this paper how the MACRO limited streamer tube system can be
operated in drift mode by using the TDC's included in the QTPs, an electronics
designed for magnetic monopole search. An improvement of the space resolution
is obtained, through an analysis of the multiple scattering of muon tracks as
they pass through our detector. This information can be used further to obtain
an estimate of the energy of muons crossing the detector. Here we present the
results of two dedicated tests, performed at CERN PS-T9 and SPS-X7 beam lines,
to provide a full check of the electronics and to exploit the feasibility of
such a multiple scattering analysis. We show that by using a neural network
approach, we are able to reconstruct the muon energy for 40 GeV. The
test beam data provide an absolute energy calibration, which allows us to apply
this method to MACRO data.Comment: 25 pages, 11 figures, Submitted to Nucl. Instr. & Meth.
Atmospheric neutrino induced muons in the MACRO detector
A measurement of the flux of neutrino-induced muons using the MACRO detector
is presented. Different event topologies, corresponding to different neutrino
parent energies can be detected. The upward throughgoing muon sample is the
larger event sample. The observed upward-throughgoing muons are 26% fewer than
expected and the zenith angle distribution does not fit with the expected one.
Assuming neutrino oscillations, both measurements suggest maximum mixing and
Dm2 of a few times 10-3 eV2. The other samples are due to the internally
produced events and to upward-going stopping muons. These data show a regular
deficit of observed events in each angular bin, as expected assuming neutrino
oscillations with maximum mixing, in agreement with the analysis of the
upward-throughgoing muon sample.Comment: 7 pages 6 figures to appear in the proceedings of XVIII International
Conference on Neutrino Physics and Astrophysics (Neutrino'98), Takayama,
Japan 4-9 June, 199
- …
