251 research outputs found

    Temporally Resolved Intensity Contouring (TRIC) for characterization of the absolute spatio-temporal intensity distribution of a relativistic, femtosecond laser pulse

    Get PDF
    Today's high-power laser systems are capable of reaching photon intensities up to 102210^{22} W/cm^2, generating plasmas when interacting with material. The high intensity and ultrashort laser pulse duration (fs) make direct observation of plasma dynamics a challenging task. In the field of laser-plasma physics and especially for the acceleration of ions, the spatio-temporal intensity distribution is one of the most critical aspects. We describe a novel method based on a single-shot (i.e. single laser pulse) chirped probing scheme, taking nine sequential frames at framerates up to THz. This technique, to which we refer as temporally resolved intensity contouring (TRIC) enables single-shot measurement of laser-plasma dynamics. Using TRIC, we demonstrate the reconstruction of the complete spatio-temporal intensity distribution of a high-power laser pulse in the focal plane at full pulse energy with sub picosecond resolution.Comment: Daniel Haffa, Jianhui Bin and Martin Speicher are corresponding author

    Performance of ab initio and density functional methods for conformational equilibria of CnH2n+2 alkane isomers (n=2-8)

    Full text link
    Conformational energies of n-butane, n-pentane, and n-hexane have been calculated at the CCSD(T) level and at or near the basis set limit. Post-CCSD(T) contribution were considered and found to be unimportant. The data thus obtained were used to assess the performance of a variety of density functional methods. Double-hybrid functionals like B2GP-PLYP and B2K-PLYP, especially with a small Grimme-type empirical dispersion correction, are capable of rendering conformational energies of CCSD(T) quality. These were then used as a `secondary standard' for a larger sample of alkanes, including isopentane and the branched hexanes as well as key isomers of heptane and octane. Popular DFT functionals like B3LYP, B3PW91, BLYP, PBE, and PBE0 tend to overestimate conformer energies without dispersion correction, while the M06 family severely underestimates GG interaction energies. Grimme-type dispersion corrections for these overcorrect and lead to qualitatively wrong conformer orderings. All of these functionals also exhibit deficiencies in the conformer geometries, particularly the backbone torsion angles. The PW6B95 and, to a lesser extent, BMK functionals are relatively free of these deficiencies. Performance of these methods is further investigated to derive conformer ensemble corrections to the enthalpy function, H298H0H_{298}-H_0, and the Gibbs energy function, gef(T)[G(T)H0]/T{\rm gef}(T)\equiv - [G(T)-H_0]/T, of these alkanes. While H298H0H_{298}-H_0 is only moderately sensitive to the level of theory, gef(T){\rm gef}(T) exhibits more pronounced sensitivity. Once again, double hybrids acquit themselves very well.Comment: J. Phys. Chem. A, revised [Walter Thiel festschrift

    CheS-Mapper - Chemical Space Mapping and Visualization in 3D

    Get PDF
    Analyzing chemical datasets is a challenging task for scientific researchers in the field of chemoinformatics. It is important, yet difficult to understand the relationship between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects. To that respect, visualization tools can help to better comprehend the underlying correlations. Our recently developed 3D molecular viewer CheS-Mapper (Chemical Space Mapper) divides large datasets into clusters of similar compounds and consequently arranges them in 3D space, such that their spatial proximity reflects their similarity. The user can indirectly determine similarity, by selecting which features to employ in the process. The tool can use and calculate different kind of features, like structural fragments as well as quantitative chemical descriptors. These features can be highlighted within CheS-Mapper, which aids the chemist to better understand patterns and regularities and relate the observations to established scientific knowledge. As a final function, the tool can also be used to select and export specific subsets of a given dataset for further analysis

    Исследование последовательности импульсов тормозного излучения малогабаритного бетатрона

    Get PDF
    Разработана имитационная модель потока импульсного тормозного излучения и реализована в подпрограмме на MathCad. Адаптирована модель потока импульсного тормозного излучения к имитационной модели формирования цифровых радиографических изображений. Исследовано влияние параметров исходного потока тормозного излучения на качество цифровых радиографических изображений. Проведён цикл натурных экспериментов по оценке изменения параметров потока импульсов регистрируемого излучения с цифровых детекторов на этапах формирования радиографического изображения на комплексе высокоэнергетической цифровой радиографии Томского политехнического университета.A simulation model of pulsed radiation flux and implemented in a subroutine on MathCad is available. Pulse bremsstrahlung flow model for a simulation model of digital radiographic image formation Adapted. Effect of source stream parameters. Experiments on the study of changes in the parameters of the pulse flux are recorded using digital detectors at the stages of radiographic image formation on the complexes of high-energy digital radiography of the Tomsk Polytechnic University
    corecore