94 research outputs found

    Developing a Virtual Interdisciplinary Research Community in Clinical Education: Enticing People to the “Tea-Room”

    Get PDF
    Background: Many interdisciplinary collaborative research programs in the health sector are adopting the community of practice concept within virtual environments. This study explores the factors that affect the members of a geographically dispersed group of health professionals in their attempt to create an interprofessional Virtual Community of Practice (VCoP) from which to promote clinical education research.Method & Findings: A survey was used to determine participants’ degree of computer competency. System logs recorded members’ access details and site activity. Member perceptions and beliefs were established using focus groups. While members stated they were enthusiastic about the VCoP, the primary use was viewing. Their online behaviour indicated that on average it took six visits to generate a post. This suggests a stronger focus on viewing (consumption of) information than on contributing (construction of) information.Conclusions: We believe it is crucial for members to contribute during the initial phase of any pre-structured VCoP in order to overcome the consumption-construction dilemma. It is during this initial phase that members will decide on the community’s value. If the community cannot offer added value, members who engage are likely to consume for a time and then leave

    Національно-демократичні об'єднання та політичні партії в Україні кінця XIX - початку XX століття

    Get PDF
    Deep brain stimulation (DBS) has become increasingly important for the treatment and relief of neurological disorders such as Parkinson's disease, tremor, dystonia and psychiatric illness. As DBS implantations and any other stereotactic and functional surgical procedure require accurate, precise and safe targeting of the brain structure, the technical aids for preoperative planning, intervention and postoperative follow-up have become increasingly important. The aim of this paper was to give and overview, from a biomedical engineering perspective, of a typical implantation procedure and current supporting techniques. Furthermore, emerging technical aids not yet clinically established are presented. This includes the state-of-the-art of neuroimaging and navigation, patient-specific simulation of DBS electric field, optical methods for intracerebral guidance, movement pattern analysis, intraoperative data visualisation and trends related to new stimulation devices. As DBS surgery already today is an important technology intensive domain, an "intuitive visualisation" interface for improving management of these data in relation to surgery is suggested

    Optimization of extracranial stereotactic radiation therapy of small lung lesions using accurate dose calculation algorithms

    Get PDF
    BACKGROUND: The aim of this study was to compare and to validate different dose calculation algorithms for the use in radiation therapy of small lung lesions and to optimize the treatment planning using accurate dose calculation algorithms. METHODS: A 9-field conformal treatment plan was generated on an inhomogeneous phantom with lung mimics and a soft tissue equivalent insert, mimicking a lung tumor. The dose distribution was calculated with the Pencil Beam and Collapsed Cone algorithms implemented in Masterplan (Nucletron) and the Monte Carlo system XVMC and validated using Gafchromic EBT films. Differences in dose distribution were evaluated. The plans were then optimized by adding segments to the outer shell of the target in order to increase the dose near the interface to the lung. RESULTS: The Pencil Beam algorithm overestimated the dose by up to 15% compared to the measurements. Collapsed Cone and Monte Carlo predicted the dose more accurately with a maximum difference of -8% and -3% respectively compared to the film. Plan optimization by adding small segments to the peripheral parts of the target, creating a 2-step fluence modulation, allowed to increase target coverage and homogeneity as compared to the uncorrected 9 field plan. CONCLUSION: The use of forward 2-step fluence modulation in radiotherapy of small lung lesions allows the improvement of tumor coverage and dose homogeneity as compared to non-modulated treatment plans and may thus help to increase the local tumor control probability. While the Collapsed Cone algorithm is closer to measurements than the Pencil Beam algorithm, both algorithms are limited at tissue/lung interfaces, leaving Monte-Carlo the most accurate algorithm for dose prediction

    An introduction to radiation protection in medicine

    Full text link

    Scanner uniformity improvements for radiochromic film analysis with matt reflectance backing

    No full text
    A simple and reproducible method for increasing desktop scanner uniformity for the analysis of radiochromic films is presented. Scanner uniformity, especially in the non-scan direction, for transmission scanning is well known to be problematic for radiochromic film analysis and normally corrections need to be applied. These corrections are dependant on scanner coordinates and dose level applied which complicates dosimetry procedures. This study has highlighted that using reflectance scanning in combination with a matt, white backing material instead of the conventional gloss scanner finish, substantial increases in the scanner uniformity can be achieved within 90% of the scanning area. Uniformity within +/- 1% over the scanning area for our epsonV700 scanner tested was found. This is compared to within +/- 3% for reflection scanning with the gloss backing material and within +/- 4% for transmission scanning. The matt backing material used was simply 5 layers of standard quality white printing paper (80 g/m(2)). It was found that 5 layers was the optimal result for backing material however most of the improvements were seen with a minimum of 3 layers. Above 5 layers, no extra benefit was seen. This may eliminate the need to perform scanner corrections for position on the desktop scanners for radiochromic film dosimetry
    corecore