3,514 research outputs found

    Non-LTE neutral carbon spectral line formation in late-type stars

    Full text link
    We present non-Local Thermodynamic Equilibrium (non-LTE) calculations for neutral carbon spectral line formation, carried out for a grid of model atmospheres covering the range of late-type stars. The results of our detailed calculations suggest that the carbon non-LTE corrections in these stars are higher than usually adopted, remaining substantial even at low metallicity. For the most metal-poor stars in the sample of Akerman et al. (2004), the non-LTE abundance corrections are of the order of -0.35...-0.45 dex (when neglecting H collisions). Applying our results to those observations, the apparent [C/O] upturn seen in their LTE analysis is no longer present, thus revealing no need to invoke contributions from Pop. III stars to the carbon nucleosynthesis.Comment: 2 pages, 1 figure. To appear in the Proceedings of IAU Symposium 228 "From Li to U: Elemental Tracers of Early Cosmic Evolution", eds. V. Hill, P. Francois and F. Primas, Cambridge University Press. Replacement with minor textual correction

    Expression of mRNA for phospholipase A(2), cyclooxygenases, and lipoxygenases in cultured human umbilical vascular endothelial and smooth muscle cells and in biopsies from umbilical arteries and veins

    Get PDF
    Arachidonic acid (AA) is released by phospholipase A(2) (PLA(2)) and then converted into vasoactive and inflammatory eicosanoids by cyclooxygenases (COX) and lipoxygenases (LOX). These eicosanoids are important paracrine regulators of vascular permeability, blood flow, local pro- and anticoagulant activity and they play a major role in the local inflammatory response. We have investigated the presence of mRNAs for PLA(2) and for isoforms of COX and LOX in both human endothelial cells (EC) and in human smooth muscle cells (SMC) in culture and in vascular biopsies of human umbilical veins (HUVB) and arteries (HUAB) by using the reversed transcription-polymerase chain reaction (RT-PCR) technique. Results show detectable levels of PLA(2) type IV (cPLA(2)) in cultured EC and SMC and in vascular wall biopsies from HUAB and HUVB. The cultured EC and SMC demonstrate higher levels of both COX-1 and COX-2 with PCR analyses than do vascular wall biopsies from HUAB and HUVB. This indicates a difference in the native expression of COX-1 and COX-2 in cultures of EC and SMC compared to that in biopsies from intact vessel walls. The EC and SMC in culture do not express mRNA for 5-LOX, that was, however, expressed in the vascular wall biopsies. This speaks in favour of a constitutive, i.e, in vivo expression of 5-LOX in SMC in the vascular wall of both umbilical vein and arteries. Thus results from in vitro studies of constitutive COX and LOX expression in EC and vascular SMC in culture cannot simply be extrapolated to represent in vivo conditions

    Modeling of Covalent Bonding in Solids by Inversion of Cohesive Energy Curves

    Full text link
    We provide a systematic test of empirical theories of covalent bonding in solids using an exact procedure to invert ab initio cohesive energy curves. By considering multiple structures of the same material, it is possible for the first time to test competing angular functions, expose inconsistencies in the basic assumption of a cluster expansion, and extract general features of covalent bonding. We test our methods on silicon, and provide the direct evidence that the Tersoff-type bond order formalism correctly describes coordination dependence. For bond-bending forces, we obtain skewed angular functions that favor small angles, unlike existing models. As a proof-of-principle demonstration, we derive a Si interatomic potential which exhibits comparable accuracy to existing models.Comment: 4 pages revtex (twocolumn, psfig), 3 figures. Title and some wording (but no content) changed since original submission on 24 April 199

    Predictability modulates the affective and sensory-discriminative neural processing of pain

    Get PDF
    Knowing what is going to happen next, that is, the capacity to predict upcoming events, modulates the extent to which aversive stimuli induce stress and anxiety. We explored this issue by manipulating the temporal predictability of aversive events by means of a visual cue, which was either correlated or uncorrelated with pain stimuli (electric shocks). Subjects reported lower levels of anxiety, negative valence and pain intensity when shocks were predictable. In addition to attenuate focus on danger, predictability allows for correct temporal estimation of, and selective attention to, the sensory input. With functional magnetic resonance imaging, we found that predictability was related to enhanced activity in relevant sensory-discriminative processing areas, such as the primary and secondary sensory cortex and posterior insula. In contrast, the unpredictable more aversive context was correlated to brain activity in the anterior insula and the orbitofrontal cortex, areas associated with affective pain processing. This context also prompted increased activity in the posterior parietal cortex and lateral prefrontal cortex that we attribute to enhanced alertness and sustained attention during unpredictability. (c) 2006 Elsevier Inc. All rights reserved.This study was supported by grants from The Swedish Research Council (2003-5810), The family Hedlund Foundation and Karolinska Institutet. The project was finished in the context of Stockholm Brain Institute.info:eu-repo/semantics/publishedVersio

    Non-WKB Models of the FIP Effect: The Role of Slow Mode Waves

    Full text link
    A model for element abundance fractionation between the solar chromosphere and corona is further developed. The ponderomotive force due to Alfven waves propagating through, or reflecting from the chromosphere in solar conditions generally accelerates chromospheric ions, but not neutrals, into the corona. This gives rise to what has become known as the First Ionization Potential (FIP) Effect. We incorporate new physical processes into the model. The chromospheric ionization balance is improved, and the effect of different approximations is discussed. We also treat the parametric generation of slow mode waves by the parallel propagating Alfven waves. This is also an effect of the ponderomotive force, arising from the periodic variation of the magnetic pressure driving an acoustic mode, which adds to the background longitudinal pressure. This can have subtle effects on the fractionation, rendering it quasi-mass independent in the lower regions of the chromosphere. We also briefly discuss the change in the fractionation with Alfven wave frequency, relative to the frequency of the overlying coronal loop resonance.Comment: 32 pages, 8 figures, accepted by Ap

    Antagonistically pleiotropic allele increases lifespan and late-life reproduction at the cost of early-life reproduction and individual fitness

    Get PDF
    Evolutionary theory of ageing maintains that increased allocation to early-life reproduction results in reduced somatic maintenance, which is predicted to compromise longevity and late-life reproduction. This prediction has been challenged by the discovery of long-lived mutants with no loss of fecundity. The first such long-lived mutant was found in the nematode worm Caenorhabditis elegans. Specifically, partial-loss-of-function mutation in the age-1 gene, involved in the nutrient-sensing insulin/insulin-like growth factor (IIS) signalling pathway, confers longevity, as well as increased resistance to pathogens and to temperature stress without appreciable fitness detriment. Here we show that the long-lived age-1(hx546) mutant has reduced fecundity and offspring production in early-life but increased fecundity, hatching success and offspring production in late-life compared to wild-type worms under standard conditions. However, reduced early-life performance of long-lived mutant animals was not fully compensated by improved performance in late-life and resulted in reduced individual fitness. These results suggest that the age-1(hx546) allele has opposing effects on early-life versus late-life fitness in accordance with antagonistic pleiotropy and disposable soma theories of ageing. These findings support the theoretical conjecture that experimental studies based on standing genetic variation underestimate the importance of antagonistic pleiotropy in the evolution of ageing

    A Method to Extract Potentials from the Temperature Dependence of Langmuir Constants for Clathrate-Hydrates

    Full text link
    It is shown that the temperature dependence of Langmuir constants contains all the information needed to determine spherically averaged intermolecular potentials. An analytical ``inversion'' method based on the standard statistical model of van der Waals and Platteeuw is presented which extracts cell potentials directly from experimental data. The method is applied to ethane and cyclopropane clathrate-hydrates, and the resulting potentials are much simpler and more meaningful than those obtained by the usual method of numerical fitting with Kihara potentials.Comment: 33 pages, 7 figures, to appear in Physica

    Active contractility in actomyosin networks

    Full text link
    Contractile forces are essential for many developmental processes involving cell shape change and tissue deformation. Recent experiments on reconstituted actomyosin networks, the major component of the contractile machinery, have shown that active contractility occurs above a threshold motor concentration and within a window of crosslink concentration. We present a microscopic dynamic model that incorporates two essential aspects of actomyosin self-organization: the asymmetric load response of individual actin filaments and the correlated motor-driven events mimicking myosin-induced filament sliding. Using computer simulations we examine how the concentration and susceptibility of motors contribute to their collective behavior and interplay with the network connectivity to regulate macroscopic contractility. Our model is shown to capture the formation and dynamics of contractile structures and agree with the observed dependence of active contractility on microscopic parameters including the contractility onset. Cooperative action of load-resisting motors in a force-percolating structure integrates local contraction/buckling events into a global contractile state via an active coarsening process, in contrast to the flow transition driven by uncorrelated kicks of susceptible motors.Comment: 15 pages, 4 main figures, 4 supplementary figure

    Influence of polymerisation conditions on the properties of polymer/clay nanocomposite hydrogels

    Get PDF
    Free-radical polymerisation of acrylamide derivatives in the presence of exfoliated clay platelets has recently emerged as a new technique for the synthesis of strong and tough nanocomposite hydrogels (NCHs) with a unique hybrid organic/inorganic network structure. The central intent of many research studies in the field of NCHs conducted so far was to change hydrogel properties with the introduction of various clays and variation of the clay content. Here, we demonstrate that the properties of NCHs significantly vary depending on initiating conditions used for hydrogel synthesis via in situ polymerisation in solutions of high monomer concentrations (above 1 mol L-1 ). A unique, complementary combination of real-time dynamic rheology and pulsed NMR/MRI has been used to study the influence of the composition of a redox initiating system on the gelation process and hydrogel properties. The molar ratio of the persulphate initiator to tertiary amine activator affects the polymerisation kinetics, morphology and mechanical properties of the hydrogels. We further show that activator-dominated systems tend to produce hydrogels with higher storage modulus and lower water intake. This trend is attributed to the increase in the cross-linking degree. From the analysis of the water state in NCH and hydrogels prepared with and without an organic cross-linker, it was concluded that clay platelets did not form covalent bonds with polymer molecules but contributed to the formation of a physical network. There is evidence of self-crosslinking of polymer chains during acrylamide polymerisation at high monomer concentration. The composition of the initiating system influences the number of formed self-crosslinks

    Experimentally reduced insulin/IGF-1 signaling in adulthood extends lifespan of parents and improves Darwinian fitness of their offspring

    Get PDF
    Classical theory maintains that ageing evolves via energy trade-offs between reproduction and survival leading to accumulation of unrepaired cellular damage with age. In contrast, the emerging new theory postulates that ageing evolves because of deleterious late-life hyper-function of reproduction-promoting genes leading to excessive biosynthesis in late-life. The hyper-function theory uniquely predicts that optimizing nutrient-sensing molecular signaling in adulthood can simultaneously postpone ageing and increase Darwinian fitness. Here, we show that reducing evolutionarily conserved insulin/IGF-1 nutrient-sensing signaling via daf-2 RNA interference (RNAi) fulfils this prediction in Caenorhabditis elegans nematodes. Long-lived daf-2 RNAi parents showed normal fecundity as self-fertilizing hermaphrodites and improved late-life reproduction when mated to males. Remarkably, the offspring of daf-2 RNAi parents had higher Darwinian fitness across three different genotypes. Thus, reduced nutrient-sensing signaling in adulthood improves both parental longevity and offspring fitness supporting the emerging view that suboptimal gene expression in late-life lies at the heart of ageing
    corecore