2,363 research outputs found
Automatic landmarking for building biological shape models
We present a new method for automatic landmark extraction from the contours of biological specimens. Our ultimate goal is to enable automatic identification of biological specimens in photographs and drawings held in a database. We propose to use active appearance models for visual indexing of both photographs and drawings. Automatic landmark extraction will assist us in building the models. We describe the results of using our method on drawings and photographs of examples of diatoms, and present an active shape model built using automatically extracted data
SUSY breaking based on Abelian gaugino kinetic term mixings
We present a SUSY breaking scenario based on Abelian gaugino kinetic term
mixings between hidden and observable sectors. If an extra U(1) gaugino in the
observable sector obtains a large mass through this mixing effect based on SUSY
breaking in the hidden sector, soft SUSY breaking parameters in the MSSM may be
affected by radiative effects due to this gaugino mass. New phenomenological
aspects are discussed in such a SUSY breaking scenario.Comment: latex, 12pages, 2figures, published versio
Southern Hemisphere automated supernova search
The Perth Astronomy Research Group has developed an automated supernova search program, using the 61 cm Perth–Lowell reflecting telescope at Perth Observatory in Western Australia, equipped with a CCD camera. The system is currently capable of observing about 15 objects per hour, using 3 min exposures, and has a detection threshold of 18th–19th magnitude. The entire system has been constructed using low‐cost IBM‐compatible computers. Two original discoveries (SN 1993K, SN 1994R) have so far been made during automated search runs. This paper describes the hardware and software used for the supernova search program, and shows some preliminary results from the search system
The Stromlo Missing Satellites Survey
The Stromlo Missing Satellites (SMS) program is a critical endeavor to
investigate whether cold dark matter cosmology is flawed in its ability to
describe the matter distribution on galaxy scales or proves itself once again
as a powerful theory to make observational predictions. The project will
deliver unprecedented results on Milky Way satellite numbers, their
distribution and physical properties. It is the deepest, most extended survey
for optically elusive dwarf satellite galaxies to date, covering the entire
20,000 sq deg of the Southern hemisphere. 150TB of CCD images will be analysed
in six photometric bands, 0.5-1.0 mag fainter than SDSS produced by the ANU
SkyMapper telescope over the next five years. (For more details see:
http://msowww.anu.edu.au/~jerjen/SMS_Survey.html)Comment: 4 pages, 1 figure, in "Galaxies in the Local Volume" (Sydney, 8-13
July 2007), eds B. Koribalski and H. Jerjen, Springer Astrophysics and Space
Science Proceedings, p. 18
Degenerative mitral valve disease: Survival of dogs attending primary-care practice in england
Integrating out the heaviest quark in N--flavour ChPT
We extend a known method to integrate out the strange quark in three flavour
chiral perturbation theory to the context of an arbitrary number of flavours.
As an application, we present the explicit formulae to one--loop accuracy for
the heavy quark mass dependency of the low energy constants after decreasing
the number of flavours by one while integrating out the heaviest quark in
N--flavour chiral perturbation theory.Comment: 18 pages, 1 figure. Text and references added. To appear in EPJ
Toeplitz Quantization of K\"ahler Manifolds and
For general compact K\"ahler manifolds it is shown that both Toeplitz
quantization and geometric quantization lead to a well-defined (by operator
norm estimates) classical limit. This generalizes earlier results of the
authors and Klimek and Lesniewski obtained for the torus and higher genus
Riemann surfaces, respectively. We thereby arrive at an approximation of the
Poisson algebra by a sequence of finite-dimensional matrix algebras ,
.Comment: 17 pages, AmsTeX 2.1, Sept. 93 (rev: only typos are corrected
Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group
We study Sobolev-type metrics of fractional order on the group
\Diff_c(M) of compactly supported diffeomorphisms of a manifold . We show
that for the important special case the geodesic distance on
\Diff_c(S^1) vanishes if and only if . For other manifolds we
obtain a partial characterization: the geodesic distance on \Diff_c(M)
vanishes for and for ,
with being a compact Riemannian manifold. On the other hand the geodesic
distance on \Diff_c(M) is positive for and
.
For we discuss the geodesic equations for these metrics. For
we obtain some well known PDEs of hydrodynamics: Burgers' equation for ,
the modified Constantin-Lax-Majda equation for and the
Camassa-Holm equation for .Comment: 16 pages. Final versio
Synthesis of 3-D coronal-solar wind energetic particle acceleration modules
1. Introduction Acute space radiation hazards pose one of the most serious risks to future human and robotic exploration. Large solar energetic particle (SEP) events are dangerous to astronauts and equipment. The ability to predict when and where large SEPs will occur is necessary in order to mitigate their hazards. The Coronal-Solar Wind Energetic Particle Acceleration (C-SWEPA) modeling effort in the NASA/NSF Space Weather Modeling Collaborative [Schunk, 2014] combines two successful Living With a Star (LWS) (http://lws. gsfc.nasa.gov/) strategic capabilities: the Earth-Moon-Mars Radiation Environment Modules (EMMREM) [Schwadron et al., 2010] that describe energetic particles and their effects, with the Next Generation Model for the Corona and Solar Wind developed by the Predictive Science, Inc. (PSI) group. The goal of the C-SWEPA effort is to develop a coupled model that describes the conditions of the corona, solar wind, coronal mass ejections (CMEs) and associated shocks, particle acceleration, and propagation via physics-based modules. Assessing the threat of SEPs is a difficult problem. The largest SEPs typically arise in conjunction with X class flares and very fast (\u3e1000 km/s) CMEs. These events are usually associated with complex sunspot groups (also known as active regions) that harbor strong, stressed magnetic fields. Highly energetic protons generated in these events travel near the speed of light and can arrive at Earth minutes after the eruptive event. The generation of these particles is, in turn, believed to be primarily associated with the shock wave formed very low in the corona by the passage of the CME (injection of particles from the flare site may also play a role). Whether these particles actually reach Earth (or any other point) depends on their transport in the interplanetary magnetic field and their magnetic connection to the shock
Phase diagrams of the generalized spin-1/2 ladder under staggered field and dimerization: A renormalization group study
In the weak-coupling regime of the continuous theories, two sets of one-loop
renormalization group equations are derived and solved to disclose the phase
diagrams of the antiferromagnetic generalized two-leg spin-1/2 ladder under the
effect of (I) a staggered external magnetic field and (II) an explicit
dimerization. In model (I), the splitting of the SU(2) critical line into
U(1) and Z critical surfaces is observed; while in model (II), two critical
surfaces arising from their underlying critical lines with SU(2) and Z
characteristics merge into an SU(2) critical surface on the line where the
model attains its highest symmetry.Comment: 10 pages, 9 figure
- …
