2,519 research outputs found
The proton's gluon structure
The proton's gluon structure function at small x is larger than nowadays is
commonly believedComment: Talk at QCD 02, Montpellier, July 200
Comparison of GCM- and RCM-simulated precipitation following stochastic postprocessing
In order to assess to what extent regional climate models (RCMs) yield better representations of climatic states than general circulation models (GCMs), the output of each is usually directly compared with observations. RCM output is often bias corrected, and in some cases correction methods can also be applied to GCMs. This leads to the question of whether bias-corrected RCMs perform better than bias-corrected GCMs. Here the first results from such a comparison are presented, followed by discussion of the value added by RCMs in this setup. Stochastic postprocessing, based on Model Output Statistics (MOS), is used to estimate daily precipitation at 465 stations across the United Kingdom between 1961 and 2000 using simulated precipitation from two RCMs (RACMO2 and CCLM) and, for the first time, a GCM (ECHAM5) as predictors. The large-scale weather states in each simulation are forced toward observations. The MOS method uses logistic regression to model precipitation occurrence and a Gamma distribution for the wet day distribution, and is cross validated based on Brier and quantile skill scores. A major outcome of the study is that the corrected GCM-simulated precipitation yields consistently higher validation scores than the corrected RCM-simulated precipitation. This seems to suggest that, in a setup with postprocessing, there is no clear added value by RCMs with respect to downscaling individual weather states. However, due to the different ways of controlling the atmospheric circulation in the RCM and the GCM simulations, such a strong conclusion cannot be drawn. Yet the study demonstrates how challenging it is to demonstrate the value added by RCMs in this setup
Resonances from meson-meson scattering in U(3) CHPT
In this work, the complete one loop calculation of meson-meson scattering
amplitudes within U(3)\otimes U(3) chiral perturbation theory with explicit
resonance states is carried out for the first time. Partial waves are
unitarized from the perturbative calculation employing a non-perturbative
approach based on the N/D method. Once experimental data are reproduced in a
satisfactory way we then study the resonance properties, such as the pole
positions, corresponding residues and their N_C behaviors. The resulting N_C
dependence is the first one in the literature that takes into account the fact
that the \eta_1 becomes the ninth Goldstone boson in the chiral limit for large
N_C. Within this scheme the vector resonances studied, \rho(770), K^*(892) and
\phi(1020), follow an N_C trajectory in agreement with their standard \bar{q}q
interpretation. The scalars f_0(1370), a_0(1450) and K^*(1430) also have for
large N_C a \bar{q}q pole position trajectory and all of them tend to a bare
octet of scalar resonances around 1.4 GeV. The f_0(980) tends asymptotically to
the bare pole position of a singlet scalar resonance around 1 GeV. The \sigma,
\kappa and a_0(980) scalar resonances have a very different N_C behavior. The
case of the \sigma resonance is analyzed with special detail.Comment: 50 pages, 15 figures, 1 table. Enlarged version with more detail
comparisons with previous results in the literature. To match with accepted
version for publicatio
Effects of mesoscale eddy/wind interactions on biological new production and eddy kinetic energy
Accounting for ocean currents in the bulk parameterization of the wind stress might represent a physically more plausible way to force an ocean model than ignoring their effect. We show in this study that using the air-sea velocity difference instead of the atmospheric wind in the wind stress formulation dampens both the near-surface eddy activity and the biotic carbon assimilation in a high-resolution model of the North Atlantic. The former is significant, corresponding to a reduction down to 50% in the tropical Atlantic, while in higher latitudes (in agreement with previous results) the reduction of eddy activity is only around 10%. The effect on biotically mediated new production and air-sea carbon fluxes is, on the other hand, minor. New production is reduced by less than 5% on a basin average, while simulated air-sea CO2 fluxes are barely affected at all. The model results imply that eddy/wind interaction introduced by accounting for ocean currents in the wind stress formulation does not drive any additional (and hitherto unaccounted) nutrient fluxes to the sunlit surface of the subtropical gyre, as was recently proposed in the literature
Dispersion Relation Bounds for pi pi Scattering
Axiomatic principles such as analyticity, unitarity and crossing symmetry
constrain the second derivative of the pi pi scattering amplitudes in some
channels to be positive in a region of the Mandelstam plane. Since this region
lies in the domain of validity of chiral perturbation theory, we can use these
positivity conditions to bound linear combinations of \bar{l}_1 and \bar{l}_2.
We compare our predictions with those derived previously in the literature
using similar methods. We compute the one-loop pi pi scattering amplitude in
the linear sigma model (LSM) using the MS-bar scheme, a result hitherto absent
in the literature. The LSM values for \bar{l}_1 and \bar{l}_2 violate the
bounds for small values of m_sigma/m_pi. We show how this can occur, while
still being consistent with the axiomatic principles.Comment: 12 pages, 8 figures. Two references added, a few minor changes.
Published versio
Toward a unified description of hadro- and photoproduction: S-wave pi- and eta-photoproduction amplitudes
The Chew-Mandelstam parameterization, which has been used extensively in the
two-body hadronic sector, is generalized in this exploratory study to the
electromagnetic sector by simultaneous fits to the pion- and
eta-photoproduction S-wave multipole amplitudes for center-of-mass energies
from the pion threshold through 1.61 GeV. We review the Chew-Mandelstam
parameterization in detail to clarify the theoretical content of the SAID
hadronic amplitude analysis and to place the proposed, generalized SAID
electromagnetic amplitudes in the context of earlier employed parameterized
forms. The parameterization is unitary at the two-body level, employing four
hadronic channels and the gamma-N electromagnetic channel. We compare the
resulting fit to the MAID parameterization and find qualitative agreement
though, numerically, the solution is somewhat different. Applications of the
extended parameterization to global fits of the photoproduction data and to
global fits of the combined hadronic and photoproduction data are discussed.Comment: 9 pages, 9 figures; added figures and tex
Critical analysis of derivative dispersion relations at high energies
We discuss some formal and fundamental aspects related with the replacement
of integral dispersion relations by derivative forms, and their practical uses
in high energy elastic hadron scattering, in particular and
scattering. Starting with integral relations with one subtraction and
considering parametrizations for the total cross sections belonging to the
class of entire functions in the logarithm of the energy, a series of results
is deduced and our main conclusions are the following: (1) except for the
subtraction constant, the derivative forms do not depend on any additional free
parameter; (2) the only approximation in going from integral to derivative
relations (at high energies) concerns to assume as zero the lower limit in the
integral form; (3) the previous approximation and the subtraction constant
affect the fit results at both low and high energies and therefore, the
subtraction constant can not be disregarded; (4) from a practical point of
view, for single-pole Pomeron and secondary reggeons parametrizations and
center-of-mass energies above 5 GeV, the derivative relations with the
subtraction constant as a free fit parameter are completely equivalent to the
integral forms with finite (non-zero) lower limit. A detailed review on the
conditions of validity and assumptions related with the replacement of integral
by derivative relations is also presented and discussed.Comment: Revised version, 30 pages, 16 eps-figures, elsart.cls (included), to
appear in Nucl Phys.
A simple recipe to detect possible C-Odd effects in high energy and
We provide a theorem to suggest that data may already be sufficient to
detect possible asymptotic C-odd (Odderon) contributions. This can be done by
comparing and observables such as total cross sections,
forward angular distributions and ratios of real to imaginary forward
amplitudes for which well defined model independent correlations {must} exist
which could already show up at RHIC energy but definitely at LHC energies.Comment: 10 pages in TeX, no figur
Phenomenological analysis connecting proton-proton and antiproton-proton elastic scattering
Based on the behavior of the elastic scattering data, we introduce an almost
model-independent parametrization for the imaginary part of the scattering
amplitude, with the energy and momentum transfer dependences inferred on
empirical basis and selected by rigorous theorems and bounds from axiomatic
quantum field theory. The corresponding real part is analytically evaluated by
means of dispersion relations, allowing connections between particle-particle
and particle-antiparticle scattering. Simultaneous fits to proton-proton and
antiproton-proton experimental data in the forward direction and also including
data beyond the forward direction, lead to a predictive formalism in both
energy and momentum transfer. We compare our extrapolations with predictions
from some popular models and discuss the applicability of the results in the
normalization of elastic rates that can be extracted from present and future
accelerator experiments (Tevatron, RHIC and LHC).Comment: 17 pages, 17 figures, to appear in Eur. Phys. J.
Quantitative autistic trait measurements index background genetic risk for ASD in Hispanic families
BACKGROUND: Recent studies have indicated that quantitative autistic traits (QATs) of parents reflect inherited liabilities that may index background genetic risk for clinical autism spectrum disorder (ASD) in their offspring. Moreover, preferential mating for QATs has been observed as a potential factor in concentrating autistic liabilities in some families across generations. Heretofore, intergenerational studies of QATs have focused almost exclusively on Caucasian populations—the present study explored these phenomena in a well-characterized Hispanic population. METHODS: The present study examined QAT scores in siblings and parents of 83 Hispanic probands meeting research diagnostic criteria for ASD, and 64 non-ASD controls, using the Social Responsiveness Scale-2 (SRS-2). Ancestry of the probands was characterized by genotype, using information from 541,929 single nucleotide polymorphic markers. RESULTS: In families of Hispanic children with an ASD diagnosis, the pattern of quantitative trait correlations observed between ASD-affected children and their first-degree relatives (ICCs on the order of 0.20), between unaffected first-degree relatives in ASD-affected families (sibling/mother ICC = 0.36; sibling/father ICC = 0.53), and between spouses (mother/father ICC = 0.48) were in keeping with the influence of transmitted background genetic risk and strong preferential mating for variation in quantitative autistic trait burden. Results from analysis of ancestry-informative genetic markers among probands in this sample were consistent with that from other Hispanic populations. CONCLUSIONS: Quantitative autistic traits represent measurable indices of inherited liability to ASD in Hispanic families. The accumulation of autistic traits occurs within generations, between spouses, and across generations, among Hispanic families affected by ASD. The occurrence of preferential mating for QATs—the magnitude of which may vary across cultures—constitutes a mechanism by which background genetic liability for ASD can accumulate in a given family in successive generations
- …
