282,293 research outputs found

    Asymmetric soft-error resistant memory

    Get PDF
    A memory system is provided, of the type that includes an error-correcting circuit that detects and corrects, that more efficiently utilizes the capacity of a memory formed of groups of binary cells whose states can be inadvertently switched by ionizing radiation. Each memory cell has an asymmetric geometry, so that ionizing radiation causes a significantly greater probability of errors in one state than in the opposite state (e.g., an erroneous switch from '1' to '0' is far more likely than a switch from '0' to'1'. An asymmetric error correcting coding circuit can be used with the asymmetric memory cells, which requires fewer bits than an efficient symmetric error correcting code

    Simultaneous QCD analysis of diffractive and inclusive DIS data

    Full text link
    We perform a NLO QCD analysis of deep-inelastic scattering data, in which we account for absorptive corrections. These corrections are determined from a simultaneous analysis of diffractive deep-inelastic data. The absorptive effects are found to enhance the size of the gluon distribution at small x, such that a negative input gluon distribution at Q^2 = 1 GeV^2 is no longer required. We discuss the problem that the gluon distribution is valence-like at low scales, whereas the sea quark distribution grows with decreasing x. Our study hints at the possible importance of power corrections for Q^2 \simeq 1--2 GeV^2.Comment: 11 pages, 3 figures. Version published as a Rapid Communication in Phys. Rev.

    Using the kinematic Sunyaev-Zeldovich effect to determine the peculiar velocities of clusters of galaxies

    Get PDF
    We have investigated the possibility of inferring peculiar velocities for clusters of galaxies from the Doppler shift of scattered cosmic microwave background (CMB) photons. We find that if the core radius of the gas distribution or the beam size of the instrument is larger than 3-7 arcminutes, then the maximum attainable signal-to-noise ratio is determined by confusion with primary fluctuations. For smaller angular scales, ``cosmic confusion'' is less important and instrumental noise and/or foreground emission will be the limiting factor. For a cluster with the optical depth of the Coma cluster and for an optimal filtering technique, typical one-sigma errors span the wide range from 400 to 1600 km/s, depending on the cosmological model, the resolution of the instrument and the core radius of the cluster. The results have important implications for the design of future high-resolution surveys of the CMB. Individual peculiar velocities will be measurable only for a few fast moving clusters at intermediate redshift unless cosmic fluctuations are smaller than most standard cosmological scenarios predict. However, a reliable measurement of bulk velocities of ensembles of X-ray bright clusters will be possible on very large scales (100-500 Mpc/h).Comment: 34 pages, with 11 figures included. Postscript. Submitted to MNRAS. Latest version (recommended) at http://www.mpa-garching.mpg.de/~max/sz.html or from [email protected]

    Paneling techniques for use with the VORLAX computer program

    Get PDF
    A method is presented for determining the geometric input data required by the VORLAX computer program in order to accurately model an aircraft configuration. Techniques are described for modeling each of the major components of a configuration and for joining these individual components into a complete configuration. The effects of trailing vortex filaments and methods of avoiding their intersection with downstream panels are also discussed. The methods presented here are applicable to most conventional aircraft configurations
    corecore