4,683 research outputs found
Moore's Dilemma
In 1918 GE Moore questioned the assumptions behind traditional sense-datum theories and offered the Multiple Relational Theory of Appearing, which he said could not be ruled out as a possible alternative. In 1953, Moore eventually came to reject the alternative and recommend endorsement of the traditional sense-datum theory again. This paper explores what Moore’s reservations in 1918 were, what the correct interpretation of the Multiple Relation Theory should be, and why it made sense for him ultimately to reject it. Moore’s paper throws light both on the nature of the argument from illusion as used in the sense-datum tradition, but also as it has been appealed to in more recent discussions of intentional theories of perception
Minimal Gaugomaly Mediation
Mixed anomaly and gauge mediation ("gaugomaly'' mediation) gives a natural
solution to the SUSY flavor problem with a conventional LSP dark matter
candidate. We present a minimal version of gaugomaly mediation where the
messenger masses arise directly from anomaly mediation, automatically
generating a messenger scale of order 50 TeV. We also describe a simple
relaxation mechanism that gives rise to realistic mu and B mu terms. B is
naturally dominated by the anomaly-mediated contribution from top loops, so the
mu/B mu sector only depends on a single new parameter. In the minimal version
of this scenario the full SUSY spectrum is determined by two continuous
parameters (the anomaly- and gauge-mediated SUSY breaking masses) and one
discrete parameter (the number of messengers). We show that these simple models
can give realistic spectra with viable dark matter.Comment: 18 pages, 4 figures; v2: corrected example generating non-holomorphic
Kahler term
Refining the scalar and tensor contributions in decays
In this article we analyze the contribution from intermediate spin-0 and
spin-2 resonances to the decay by means of a chiral
invariant Lagrangian incorporating these mesons. In particular, we study the
corresponding axial-vector form-factors. The advantage of this procedure with
respect to previous analyses is that it incorporates chiral (and isospin)
invariance and, hence, the partial conservation of the axial-vector current.
This ensures the recovery of the right low-energy limit, described by chiral
perturbation theory, and the transversality of the current in the chiral limit
at all energies. Furthermore, the meson form-factors are further improved by
requiring appropriate QCD high-energy conditions. We end up with a brief
discussion on its implementation in the Tauola Monte Carlo and the prospects
for future analyses of Belle's data.Comment: 32 pages, 13 figures. Extended discussion on the numerical importance
of the tensor and scalar resonances and the parametrization of the scalar
propagator. Version published in JHE
Renormalization in General Gauge Mediation
We revisit General Gauge Mediation (GGM) in light of the supersymmetric
(linear) sigma model by utilizing the current superfield. The current
superfield in the GGM is identified with supersymmetric extension of the vector
symmetry current of the sigma model while spontaneous breakdown of
supersymmetry in the GGM corresponds to soft breakdown of the axial vector
symmetry of the sigma model. We first derive the current superfield from the
supersymmetric linear sigma model and then compute 2-point functions of the
current superfield using the (anti-)commutation relations of the messenger
component fields. After the global symmetry are weakly gauged, the 2-point
functions of the current superfield are identified with a part of the 2-point
functions of the associated vector superfield. We renormalize them by
dimensional regularization and show that physical gaugino and sfermion masses
of the MSSM are expressed in terms of the wavefunction renormalization
constants of the component fields of the vector superfield.Comment: 25 pages, 12 figure
NLSP Gluino Search at the Tevatron and early LHC
We investigate the collider phenomenology of gluino-bino co-annihilation
scenario both at the Tevatron and 7 TeV LHC. This scenario can be realized, for
example, in a class of realistic supersymmetric models with non-universal
gaugino masses and t-b-\tau Yukawa unification. The NLSP gluino and LSP bino
should be nearly degenerate in mass, so that the typical gluino search channels
involving leptons or hard jets are not available. Consequently, the gluino can
be lighter than various bounds on its mass from direct searches. We propose a
new search for NLSP gluino involving multi-b final states, arising from the
three-body decay \tilde{g}-> b\bar{b}\tilde{\chi}_1^0. We identify two
realistic models with gluino mass of around 300 GeV for which the three-body
decay is dominant, and show that a 4.5 \sigma observation sensitivity can be
achieved at the Tevatron with an integrated luminosity of 10 fb^{-1}. For the 7
TeV LHC with 50 pb^{-1} of integrated luminosity, the number of signal events
for the two models is O(10), to be compared with negligible SM background
event.Comment: 14 pages, 4 figures and 3 tables, minor modifications made and
accepted for publication in JHE
Solving the mu problem with a heavy Higgs boson
We discuss the generation of the mu-term in a class of supersymmetric models
characterized by a low energy effective superpotential containing a term lambda
S H_1 H_2 with a large coupling lambda~2. These models generically predict a
lightest Higgs boson well above the LEP limit of 114 GeV and have been shown to
be compatible with the unification of gauge couplings. Here we discuss a
specific example where the superpotential has no dimensionful parameters and we
point out the relation between the generated mu-term and the mass of the
lightest Higgs boson. We discuss the fine-tuning of the model and we find that
the generation of a phenomenologically viable mu-term fits very well with a
heavy lightest Higgs boson and a low degree of fine-tuning. We discuss
experimental constraints from collider direct searches, precision data, thermal
relic dark matter abundance, and WIMP searches finding that the most natural
region of the parameter space is still allowed by current experiments. We
analyse bounds on the masses of the superpartners coming from Naturalness
arguments and discuss the main signatures of the model for the LHC and future
WIMP searches.Comment: Extended discussion of the LHC phenomenology, as published on JHEP
plus an addendum on the existence of further extremal points of the
potential. 47 pages, 16 figure
General Gauge Mediation with Gauge Messengers
We generalize the General Gauge Mediation formalism to allow for the
possibility of gauge messengers. Gauge messengers occur when charged matter
fields of the susy-breaking sector have non-zero F-terms, which leads to
tree-level, susy-breaking mass splittings in the gauge fields. A classic
example is that SU(5) / SU(3) x SU(2) x U(1) gauge fields could be gauge
messengers. We give a completely general, model independent, current-algebra
based analysis of gauge messenger mediation of susy-breaking to the visible
sector. Characteristic aspects of gauge messengers include enhanced
contributions to gaugino masses, (tachyonic) sfermion mass-squareds generated
already at one loop, and also at two loops, and significant one-loop A-terms,
already at the messenger scale.Comment: 79 pages, 5 figure
When Anomaly Mediation is UV Sensitive
Despite its successes---such as solving the supersymmetric flavor
problem---anomaly mediated supersymmetry breaking is untenable because of its
prediction of tachyonic sleptons. An appealing solution to this problem was
proposed by Pomarol and Rattazzi where a threshold controlled by a light field
deflects the anomaly mediated supersymmetry breaking trajectory, thus evading
tachyonic sleptons. In this paper we examine an alternate class of deflection
models where the non-supersymmetric threshold is accompanied by a heavy,
instead of light, singlet. The low energy form of this model is the so-called
extended anomaly mediation proposed by Nelson and Weiner, but with potential
for a much higher deflection threshold. The existence of this high deflection
threshold implies that the space of anomaly mediated supersymmetry breaking
deflecting models is larger than previously thought.Comment: 14 pages, 1 figure (version to appear in JHEP
Natural variation in immune responses to neonatal mycobacterium bovis bacillus calmette-guerin (BCG) vaccination in a cohort of Gambian infants
Background There is a need for new vaccines for tuberculosis (TB) that protect against adult pulmonary disease in regions where BCG is not effective. However, BCG could remain integral to TB control programmes because neonatal BCG protects against disseminated forms of childhood TB and many new vaccines rely on BCG to prime immunity or are recombinant strains of BCG. Interferon-gamma (IFN-) is required for immunity to mycobacteria and used as a marker of immunity when new vaccines are tested. Although BCG is widely given to neonates IFN- responses to BCG in this age group are poorly described. Characterisation of IFN- responses to BCG is required for interpretation of vaccine immunogenicity study data where BCG is part of the vaccination strategy. Methodology/Principal Findings 236 healthy Gambian babies were vaccinated with M. bovis BCG at birth. IFN-, interleukin (IL)-5 and IL-13 responses to purified protein derivative (PPD), killed Mycobacterium tuberculosis (KMTB), M. tuberculosis short term culture filtrate (STCF) and M. bovis BCG antigen 85 complex (Ag85) were measured in a whole blood assay two months after vaccination. Cytokine responses varied up to 10 log-fold within this population. The majority of infants (89-98% depending on the antigen) made IFN- responses and there was significant correlation between IFN- responses to the different mycobacterial antigens (Spearman’s coefficient ranged from 0.340 to 0.675, p=10-6-10-22). IL-13 and IL-5 responses were generally low and there were more non-responders (33-75%) for these cytokines. Nonetheless, significant correlations were observed for IL-13 and IL-5 responses to different mycobacterial antigens Conclusions/Significance Cytokine responses to mycobacterial antigens in BCG-vaccinated infants are heterogeneous and there is significant inter-individual variation. Further studies in large populations of infants are required to identify the factors that determine variation in IFN- responses
Maximum-Reward Motion in a Stochastic Environment: The Nonequilibrium Statistical Mechanics Perspective
We consider the problem of computing the maximum-reward motion in a reward field in an online setting. We assume that the robot has a limited perception range, and it discovers the reward field on the fly. We analyze the performance of a simple, practical lattice-based algorithm with respect to the perception range. Our main result is that, with very little perception range, the robot can collect as much reward as if it could see the whole reward field, under certain assumptions. Along the way, we establish novel connections between this class of problems and certain fundamental problems of nonequilibrium statistical mechanics . We demonstrate our results in simulation examples
- …
