5,841 research outputs found
The non-Abelian gauge theory of matrix big bangs
We study at the classical and quantum mechanical level the time-dependent
Yang-Mills theory that one obtains via the generalisation of discrete
light-cone quantisation to singular homogeneous plane waves. The non-Abelian
nature of this theory is known to be important for physics near the
singularity, at least as far as the number of degrees of freedom is concerned.
We will show that the quartic interaction is always subleading as one
approaches the singularity and that close enough to t=0 the evolution is driven
by the diverging tachyonic mass term. The evolution towards asymptotically flat
space-time also reveals some surprising features.Comment: 29 pages, 8 eps figures, v2: minor changes, references added: v3
small typographical changes
Electrically tunable multi-terminal SQUID-on-tip
We present a new nanoscale superconducting quantum interference device
(SQUID) whose interference pattern can be shifted electrically in-situ. The
device consists of a nanoscale four-terminal/four-junction SQUID fabricated at
the apex of a sharp pipette using a self-aligned three-step deposition of Pb.
In contrast to conventional two-terminal/two-junction SQUIDs that display
optimal sensitivity when flux biased to about a quarter of the flux quantum,
the additional terminals and junctions allow optimal sensitivity at arbitrary
applied flux, thus eliminating the magnetic field "blind spots". We demonstrate
spin sensitivity of 5 to 8 over a continuous field
range of 0 to 0.5 T, with promising applications for nanoscale scanning
magnetic imaging
The Exocyst Complex in Health and Disease
Exocytosis involves the fusion of intracellular secretory vesicles with the plasma membrane, thereby delivering integral membrane proteins to the cell surface and releasing material into the extracellular space. Importantly, exocytosis also provides a source of lipid moieties for membrane extension. The tethering of the secretory vesicle before docking and fusion with the plasma membrane is mediated by the exocyst complex, an evolutionary conserved octameric complex of proteins. Recent findings indicate that the exocyst complex also takes part in other intra-cellular processes besides secretion. These various functions seem to converge toward defining a direction of membrane growth in a range of systems from fungi to plants and from neurons to cilia. In this review we summarize the current knowledge of exocyst function in cell polarity, signaling and cell-cell communication and discuss implications for plant and animal health and disease
Adult respiratory distress syndrome secondary to end-stage liver disease—successful outcome following liver transplantation
The adult respiratory distress syndrome (ARDS) complicating liver failure carries a 100% mortality. Two cases of ARDS that resolved following liver transplantation have been reported, one associated with acute allograft rejection, and the second due to sepsis. There is, however, a great reluctance to transplant these very-high-risk patients. We report the first series of patients with ARDS secondary to liver failure who successfully underwent OLTX. No patient had sepsis or pneumonia. Posttransplant mechanical ventilation was required for a median of 14 days (range 6-37 days). All patients in this series are alive and well, with a follow-up of 6-15 months. This demonstrates that ARDS associated with liver failure, an otherwise uniformly lethal complication, can respond dramatically to OLTX. © 1993 by William & Wilkins
Ordering phenomena in quasi one-dimensional organic conductors
Low-dimensional organic conductors could establish themselves as model
systems for the investigation of the physics in reduced dimensions. In the
metallic state of a one-dimensional solid, Fermi-liquid theory breaks down and
spin and charge degrees of freedom become separated. But the metallic phase is
not stable in one dimension: as the temperature is reduced, the electronic
charge and spin tend to arrange themselves in an ordered fashion due to strong
correlations. The competition of the different interactions is responsible for
which broken-symmetry ground state is eventually realized in a specific
compound and which drives the system towards an insulating state.
Here we review the various ordering phenomena and how they can be identified
by optic and magnetic measurements. While the final results might look very
similar in the case of a charge density wave and a charge-ordered metal, for
instance, the physical cause is completely different. When density waves form,
a gap opens in the density of states at the Fermi energy due to nesting of the
one-dimension Fermi surface sheets. When a one-dimensional metal becomes a
charge-ordered Mott insulator, on the other hand, the short-range Coulomb
repulsion localizes the charge on the lattice sites and even causes certain
charge patterns.
We try to point out the similarities and conceptional differences of these
phenomena and give an example for each of them. Particular emphasis will be put
on collective phenomena which are inherently present as soon as ordering breaks
the symmetry of the system.Comment: Review article Naturwissenschaften 200
Remarks on the method of comparison equations (generalized WKB method) and the generalized Ermakov-Pinney equation
The connection between the method of comparison equations (generalized WKB
method) and the Ermakov-Pinney equation is established. A perturbative scheme
of solution of the generalized Ermakov-Pinney equation is developed and is
applied to the construction of perturbative series for second-order
differential equations with and without turning points.Comment: The collective of the authors is enlarged and the calculations in
Sec. 3 are correcte
Immunoblot analysis of the seroreactivity to recombinant Borrelia burgdorferi sensu lato antigens, including VlsE, in the long-term course of treated patients with Erythema migrans
Objective: We evaluated whether immunoblotting is capable of substantiating the posttreatment clinical assessment of patients with erythema migrans ( EM), the hallmark of early Lyme borreliosis. Methods: In 50 patients, seroreactivity to different antigens of Borrelia burgdorferi sensu lato was analyzed by a recombinant immunoblot test (IB) in consecutive serum samples from a minimum follow-up period of 1 year. Antigens in the IgG test were decorin- binding protein A, internal fragment of p41 (p41i), outer surface protein C (OspC), p39, variable major protein-like sequence expressed (VlsE), p58 and p100; those in the IgM test were p41i, OspC and p39. Immune responses were correlated with clinical and treatment-related parameters. Results: Positive IB results were found in 50% before, in 57% directly after therapy and in 44% by the end of the follow-up for the IgG class, and in 36, 43 and 12% for the IgM class. In acute and convalescence phase sera, VlsE was most immunogenic on IgG testing 60 and 70%), and p41i (46 and 57%) and OspC (40 and 57%) for the IgM class. By the end of the follow-up, only the anti-p41i lgM response was significantly decreased to 24%. Conclusions: No correlation was found between IB results and treatment-related parameters. Thus, immunoblotting does not add to the clinical assessment of EM patients after treatment. Copyright (c) 2008 S. Karger AG, Basel
Grifonin-1: A Small HIV-1 Entry Inhibitor Derived from the Algal Lectin, Griffithsin
Background:
Griffithsin, a 121-residue protein isolated from a red algal Griffithsia sp., binds high mannose N-linked glycans of virus surface glycoproteins with extremely high affinity, a property that allows it to prevent the entry of primary isolates and laboratory strains of T- and M-tropic HIV-1. We used the sequence of a portion of griffithsin's sequence as a design template to create smaller peptides with antiviral and carbohydrate-binding properties.
Methodology/Results:
The new peptides derived from a trio of homologous β-sheet repeats that comprise the motifs responsible for its biological activity. Our most active antiviral peptide, grifonin-1 (GRFN-1), had an EC50 of 190.8±11.0 nM in in vitro TZM-bl assays and an EC50 of 546.6±66.1 nM in p24gag antigen release assays. GRFN-1 showed considerable structural plasticity, assuming different conformations in solvents that differed in polarity and hydrophobicity. Higher concentrations of GRFN-1 formed oligomers, based on intermolecular β-sheet interactions. Like its parent protein, GRFN-1 bound viral glycoproteins gp41 and gp120 via the N-linked glycans on their surface.
Conclusion:
Its substantial antiviral activity and low toxicity in vitro suggest that GRFN-1 and/or its derivatives may have therapeutic potential as topical and/or systemic agents directed against HIV-1
Spinal involvement in mucopolysaccharidosis IVA (Morquio-Brailsford or Morquio A syndrome): presentation, diagnosis and management.
Mucopolysaccharidosis IVA (MPS IVA), also known as Morquio-Brailsford or Morquio A syndrome, is a lysosomal storage disorder caused by a deficiency of the enzyme N-acetyl-galactosamine-6-sulphate sulphatase (GALNS). MPS IVA is multisystemic but manifests primarily as a progressive skeletal dysplasia. Spinal involvement is a major cause of morbidity and mortality in MPS IVA. Early diagnosis and timely treatment of problems involving the spine are critical in preventing or arresting neurological deterioration and loss of function. This review details the spinal manifestations of MPS IVA and describes the tools used to diagnose and monitor spinal involvement. The relative utility of radiography, computed tomography (CT) and magnetic resonance imaging (MRI) for the evaluation of cervical spine instability, stenosis, and cord compression is discussed. Surgical interventions, anaesthetic considerations, and the use of neurophysiological monitoring during procedures performed under general anaesthesia are reviewed. Recommendations for regular radiological imaging and neurologic assessments are presented, and the need for a more standardized approach for evaluating and managing spinal involvement in MPS IVA is addressed
Cytogerontology since 1881: A reappraisal of August Weismann and a review of modern progress
Cytogerontology, the science of cellular ageing, originated in 1881 with the prediction by August Weismann that the somatic cells of higher animals have limited division potential. Weismann's prediction was derived by considering the role of natural selection in regulating the duration of an organism's life. For various reasons, Weismann's ideas on ageing fell into neglect following his death in 1914, and cytogerontology has only reappeared as a major research area following the demonstration by Hayflick and Moorhead in the early 1960s that diploid human fibroblasts are restricted to a finite number of divisions in vitro.
In this review we give a detailed account of Weismann's theory, and we reveal that his ideas were both more extensive in their scope and more pertinent to current research than is generally recognised. We also appraise the progress which has been made over the past hundred years in investigating the causes of ageing, with particular emphasis being given to (i) the evolution of ageing, and (ii) ageing at the cellular level. We critically assess the current state of knowledge in these areas and recommend a series of points as primary targets for future research
- …
