29 research outputs found

    High-fidelity multi-photon-entangled cluster state with solid-state quantum emitters in photonic nanostructures

    Full text link
    We propose a complete architecture for deterministic generation of entangled multiphoton states. Our approach utilizes periodic driving of a quantum-dot emitter and an efficient light-matter interface enabled by a photonic crystal waveguide. We assess the quality of the photonic states produced from a real system by including all intrinsic experimental imperfections. Importantly, the protocol is robust against the nuclear spin bath dynamics due to a naturally built-in refocussing method reminiscent to spin echo. We demonstrate the feasibility of producing Greenberger-Horne-Zeilinger and one-dimensional cluster states with fidelities and generation rates exceeding those achieved with conventional 'fusion' methods in current state-of-the-art experiments. The proposed hardware constitutes a scalable and resource-efficient approach towards implementation of measurement-based quantum communication and computing

    A many-body singlet prepared by a central spin qubit

    Get PDF
    Controllable quantum many-body systems are platforms for fundamental investigations into the nature of entanglement and promise to deliver computational speed-up for a broad class of algorithms and simulations. In particular, engineering entanglement within a dense spin ensemble can turn it into a robust quantum memory or a computational platform. Recent experimental progress in dense central spin systems motivates the design of algorithms that use a central-spin qubit as a convenient proxy for the ensemble. Here we propose a protocol that uses a central spin to initialize two dense spin ensembles into a pure anti-polarized state and from there creates a many-body entangled state -- a singlet -- from the combined ensemble. We quantify the protocol performance for multiple material platforms and show that it can be implemented even in the presence of realistic levels of decoherence. Our protocol introduces an algorithmic approach to preparation of a known many-body state and to entanglement engineering in a dense spin ensemble, which can be extended towards a broad class of collective quantum states.Comment: 11 pages, 6 figures, and supplementary material

    Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide

    Get PDF
    Access to the electron spin is at the heart of many protocols for integrated and distributed quantum-information processing [1-4]. For instance, interfacing the spin-state of an electron and a photon can be utilized to perform quantum gates between photons [2,5] or to entangle remote spin states [6-9]. Ultimately, a quantum network of entangled spins constitutes a new paradigm in quantum optics [1]. Towards this goal, an integrated spin-photon interface would be a major leap forward. Here we demonstrate an efficient and optically programmable interface between the spin of an electron in a quantum dot and photons in a nanophotonic waveguide. The spin can be deterministically prepared with a fidelity of 96\%. Subsequently the system is used to implement a "single-spin photonic switch", where the spin state of the electron directs the flow of photons through the waveguide. The spin-photon interface may enable on-chip photon-photon gates [2], single-photon transistors [10], and efficient photonic cluster state generation [11]

    A coherent spin-photon interface with waveguide induced cycling transitions

    Full text link
    Solid-state quantum dots are promising candidates for efficient light-matter interfaces connecting internal spin degrees of freedom to the states of emitted photons. However, selection rules prevent the combination of efficient spin control and optical cyclicity in this platform. By utilizing a photonic crystal waveguide we here experimentally demonstrate optical cyclicity up to 15\approx15 through photonic state engineering while achieving high fidelity spin initialization and coherent optical spin control. These capabilities pave the way towards scalable multi-photon entanglement generation and on-chip spin-photon gates.Comment: 5 pages, 4 figure

    Many-body quantum register for a spin qubit

    Full text link
    Quantum networks require quantum nodes with coherent optical interfaces and multiple stationary qubits. In terms of optical properties, semiconductor quantum dots are highly compelling, but their adoption as quantum nodes has been impaired by the lack of auxiliary qubits. Here, we demonstrate a functional quantum register in a semiconductor quantum dot leveraging the dense, always-present nuclear spin ensemble. We prepare 13,000 host nuclear spins into a single many-body dark state to operate as the register logic state 0|0\rangle. The logic state 1|1\rangle is defined as a single nuclear magnon excitation, enabling controlled quantum-state transfer between the electron spin qubit and the nuclear magnonic register. Using 130-ns SWAP gates, we implement a full write-store-retrieve-readout protocol with 68.6(4)% raw overall fidelity and a storage time of 130(16) μ\mus in the absence of dynamical decoupling. Our work establishes how many-body physics can add step-change functionality to quantum devices, in this case transforming quantum dots into multi-qubit quantum nodes with deterministic registers

    Tuning the coherent interaction of an electron qubit and a nuclear magnon

    Full text link
    A central spin qubit interacting coherently with an ensemble of proximal spins can be used to engineer entangled collective states or a multi-qubit register. Making full use of this many-body platform requires tuning the interaction between the central spin and its spin register. GaAs quantum dots offer a model realization of the central spin system where an electron qubit interacts with multiple ensembles of 104\sim 10^{4} nuclear spins. In this work, we demonstrate tuning of the interaction between the electron qubit and the nuclear many-body system in a GaAs quantum dot. The homogeneity of the GaAs system allows us to perform high-precision and isotopically selective nuclear sideband spectroscopy, which reveals the single-nucleus electronic Knight field. Together with time-resolved spectroscopy of the nuclear field, this fully characterizes the electron-nuclear interaction for a priori control. An algorithmic feedback sequence selects the nuclear polarization precisely, which adjusts the electron-nuclear exchange interaction in situ via the electronic g-factor anisotropy. This allows us to tune directly the activation rate of a collective nuclear excitation (magnon) and the coherence time of the electron qubit. Our method is applicable to similar central-spin systems and enables the programmable tuning of coherent interactions in the many-body regime.Comment: 9 pages, 5 figures, and Supplementary Material

    Entangling a Hole Spin with a Time-Bin Photon: A Waveguide Approach for Quantum Dot Sources of Multi-Photon Entanglement

    Full text link
    Deterministic sources of multi-photon entanglement are highly attractive for quantum information processing but are challenging to realize experimentally. In this paper, we demonstrate a route towards a scaleable source of time-bin encoded Greenberger-Horne-Zeilinger and linear cluster states from a solid-state quantum dot embedded in a nanophotonic crystal waveguide. By utilizing a self-stabilizing double-pass interferometer, we measure a spin-photon Bell state with (67.8±0.4)%(67.8\pm0.4)\% fidelity and devise steps for significant further improvements. By employing strict resonant excitation, we demonstrate a photon indistinguishability of (95.7±0.8)%(95.7\pm0.8)\%, which is conducive to fusion of multiple cluster states for scaling up the technology and producing more general graph states.Comment: Manuscript: 7 pages, 3 figures. Supplementary information: 23 pages, 12 figure

    A diamond nanophotonic interface with an optically accessible deterministic electronuclear spin register

    Full text link
    A contemporary challenge for the scalability of quantum networks is developing quantum nodes with simultaneous high photonic efficiency and long-lived qubits. Here, we present a fibre-packaged nanophotonic diamond waveguide hosting a tin-vacancy centre with a spin-1/2 117^{117}Sn nucleus. The interaction between the electronic and nuclear spins results in a signature 452(7) MHz hyperfine splitting. This exceeds the natural optical linewidth by a factor of 16, enabling direct optical nuclear-spin initialisation with 98.6(3)% fidelity and single-shot readout with 80(1)% fidelity. The waveguide-to-fibre extraction efficiency of our device of 57(6)% enables the practical detection of 5-photon events. Combining the photonic performance with the optically initialised nuclear spin, we demonstrate a spin-gated single-photon nonlinearity with 11(1)% contrast in the absence of an external magnetic field. These capabilities position our nanophotonic interface as a versatile quantum node in the pursuit of scalable quantum networks

    Hyperfine Spectroscopy of Isotopically Engineered Group-IV Color Centers in Diamond

    Full text link
    A quantum register coupled to a spin-photon interface is a key component in quantum communication and information processing. Group-IV color centers in diamond (SiV, GeV, and SnV) are promising candidates for this application, comprising an electronic spin with optical transitions coupled to a nuclear spin as the quantum register. However, the creation of a quantum register for these color centers with deterministic and strong coupling to the spin-photon interface remains challenging. Here, we make first-principles predictions of the hyperfine parameters of the group-IV color centers, which we verify experimentally with a comprehensive comparison between the spectra of spin active and spin neutral intrinsic dopant nuclei in single GeV and SnV emitters. In line with the theoretical predictions, detailed spectroscopy on large sample sizes reveals that hyperfine coupling causes a splitting of the optical transition of SnV an order of magnitude larger than the optical linewidth and provides a magnetic-field insensitive transition. This strong coupling provides access to a new regime for quantum registers in diamond color centers, opening avenues for novel spin-photon entanglement and quantum sensing schemes for these well-studied emitters
    corecore