163 research outputs found

    Zoonotic and pandemic influenza A viruses: lessons from H5N1 and H2N2

    Get PDF

    Zoonotic and pandemic influenza A viruses: lessons from H5N1 and H2N2

    Get PDF
    Influenza A viruses can be directly transmitted from animals to humans (zoonotic viruses), cause worldwide outbreaks (pandemic viruses) or infect people annually (seasonal viruses). Influenza A viruses that are transmitted efficiently from one person to another have in common that they can spread via the air. We have studied zoonotic H5N1 and pandemic H2N2 influenza viruses with respect to their evolution over time, their potential to transmit via the air, and the virus properties that are required to be efficiently transmitted via the air. From 1997 onwards, H5N1 influenza viruses have occasionally infected humans resulting in severe illness and several deaths. To investigate if this new zoonotic virus had the capacity to spread via the air, we adapted this virus to ferrets, an animal model often used to study airborne transmission of influenza A viruses. We have shown that as little as five mutations in the genetic material of the virus, changing three virus properties, are sufficient for the virus to transmit via the air. Since influenza A viruses evolve constantly, our immune system cannot protect us from infections with new influenza viruses that might emerge in the future. H2N2 influenza virus has caused a pandemic in 1957 and caused seasonal outbreaks in humans until 1968. We have shown that the pandemic potential of H2H2 influenza viruses circulating in birds is low. Furthermore, we have investigated the genetic diversity of H2N2 influenza viruses over time and have determined the mutations that had an effect on recognition by the immune system

    Elucidating variations in the nucleotide sequence of Ebola virus associated with increasing pathogenicity

    Get PDF
    Background Ebolaviruses cause a severe and often fatal haemorrhagic fever in humans, with some species such as Ebola virus having case fatality rates approaching 90%. Currently, the worst Ebola virus outbreak since the disease was discovered is occurring in West Africa. Although thought to be a zoonotic infection, a concern is that with increasing numbers of humans being infected, Ebola virus variants could be selected which are better adapted for human-to-human transmission. Results To investigate whether genetic changes in Ebola virus become established in response to adaptation in a different host, a guinea pig model of infection was used. In this experimental system, guinea pigs were infected with Ebola virus (EBOV), which initially did not cause disease. To simulate transmission to uninfected individuals, the virus was serially passaged five times in naïve animals. As the virus was passaged, virulence increased and clinical effects were observed in the guinea pig. An RNAseq and consensus mapping approach was then used to evaluate potential nucleotide changes in the Ebola virus genome at each passage. Conclusions Upon passage in the guinea pig model, EBOV become more virulent, RNA editing and also coding changes in key proteins become established. The data suggest that the initial evolutionary trajectory of EBOV in a new host can lead to a gain in virulence. Given the circumstances of the sustained transmission of EBOV in the current outbreak in West Africa, increases in virulence may be associated with prolonged and uncontrolled epidemics of EBOV

    In and Out of Equilibrium II: Evolution in Repeated Games with Discounting and Complexity Costs

    Full text link
    We explore evolutionary dynamics for repeated games with small, but positive complexity costs. To understand the dynamics, we extend a folk theorem result by Cooper (1996) to continuation probabilities, or discount rates, smaller than 1. While this result delineates which payoffs can be supported by neutrally stable strategies, the only strategy that is evolutionarily stable, and has a uniform invasion barrier, is All D. However, with sufficiently small complexity costs, indirect invasions - but now through 'almost neutral' mutants - become an important ingredient of the dynamics. These indirect invasions include stepping stone paths out of full defection

    Continued adaptation of A/H2N2 viruses during pandemic circulation in humans

    Get PDF
    Influenza A viruses of the H2N2 subtype sparked a pandemic in 1957 and circulated in humans until 1968. Because A/H2N2 viruses still circulate in wild birds worldwide and human population immunity is low, the transmissibility of six avian A/H2N2 viruses was investigated in the ferret model. None of the avian A/H2N2 viruses was transmitted between ferrets, suggesting that their pandemic risk may be low. The transmissibility, receptor binding preference and haemagglutinin (HA) stability of human A/H2N2 viruses were also investigated. Human A/H2N2 viruses from 1957 and 1958 bound to human-type α2,6-linked sialic acid receptors, but the 1958 virus had a more stable HA, indicating adaptation to replication and spread in the new host. This increased stability was caused by a previously unknown stability substitution G205S in the 1958 H2N2 HA, which became fixed in A/H2N2 viruses after 1958. Although individual substitutions were identified that affected the HA receptor binding and stability properties, they were not found to have a substantial effect on transmissibility of A/H2N2 viruses via the air in the ferret model. Our data demonstrate that A/H2N2 viruses continued to adapt during the first year of pandemic circulation in humans, similar to what was previously shown for the A/H1N1pdm09 virus

    Betacoronaviruses SARS-CoV-2 and HCoV-OC43 infections in IGROV-1 cell line require aryl hydrocarbon receptor

    Get PDF
    The emergence of novel betacoronaviruses has posed significant financial and human health burdens, necessitating the development of appropriate tools to combat future outbreaks. In this study, we have characterized a human cell line, IGROV-1, as a robust tool to detect, propagate, and titrate betacoronaviruses SARS-CoV-2 and HCoV-OC43. IGROV-1 cells can be used for serological assays, antiviral drug testing, and isolating SARS-CoV-2 variants from patient samples. Using time-course transcriptomics, we confirmed that IGROV-1 cells exhibit a robust innate immune response upon SARS-CoV-2 infection, recapitulating the response previously observed in primary human nasal epithelial cells. We performed genome-wide CRISPR knockout genetic screens in IGROV-1 cells and identified Aryl hydrocarbon receptor (AHR) as a critical host dependency factor for both SARS-CoV-2 and HCoV-OC43. Using DiMNF, a small molecule inhibitor of AHR, we observed that the drug selectively inhibits HCoV-OC43 infection but not SARS-CoV-2. Transcriptomic analysis in primary normal human bronchial epithelial cells revealed that DiMNF blocks HCoV-OC43 infection via basal activation of innate immune responses. Our findings highlight the potential of IGROV-1 cells as a valuable diagnostic and research tool to combat betacoronavirus diseases

    Multidrug Resistant 2009 A/H1N1 Influenza Clinical Isolate with a Neuraminidase I223R Mutation Retains Its Virulence and Transmissibility in Ferrets

    Get PDF
    Only two classes of antiviral drugs, neuraminidase inhibitors and adamantanes, are approved for prophylaxis and therapy against influenza virus infections. A major concern is that influenza virus becomes resistant to these antiviral drugs and spreads in the human population. The 2009 pandemic A/H1N1 influenza virus is naturally resistant to adamantanes. Recently a novel neuraminidase I223R mutation was identified in an A/H1N1 virus showing cross-resistance to the neuraminidase inhibitors oseltamivir, zanamivir and peramivir. However, the ability of this virus to cause disease and spread in the human population is unknown. Therefore, this clinical isolate (NL/2631-R223) was compared with a well-characterized reference virus (NL/602). In vitro experiments showed that NL/2631-I223R replicated as well as NL/602 in MDCK cells. In a ferret pathogenesis model, body weight loss was similar in animals inoculated with NL/2631-R223 or NL/602. In addition, pulmonary lesions were similar at day 4 post inoculation. However, at day 7 post inoculation, NL/2631-R223 caused milder pulmonary lesions and degree of alveolitis than NL/602. This indicated that the mutant virus was less pathogenic. Both NL/2631-R223 and a recombinant virus with a single I223R change (recNL/602-I223R), transmitted among ferrets by aerosols, despite observed attenuation of recNL/602-I223R in vitro. In conclusion, the I223R mutated virus isolate has comparable replicative ability and transmissibility, but lower pathogenicity than the reference virus based on these in vivo studies. This implies that the 2009 pandemic influenza A/H1N1 virus subtype with an isoleucine to arginine change at position 223 in the neuraminidase has the potential to spread in the human population. It is important to be vigilant for this mutation in influenza surveillance and to continue efforts to increase the arsenal of antiviral drugs to combat influenza

    Side-Payments and the Costs of Conflict

    Get PDF
    Conflict and competition often impose costs on both winners and losers, and conflicting parties may prefer to resolve the dispute before it occurs. The equilibrium of a conflict game with side-payments predicts that with binding offers, proposers make and responders accept side-payments, generating settlements that strongly favor proposers. When side-payments are non-binding, proposers offer nothing and conflicts always arise. Laboratory experiments confirm that binding side-payments reduce conflicts. However, 30 % of responders reject binding offers, and offers are more egalitarian than predicted. Surprisingly, non-binding side-payments also improve efficiency, although less than binding. With binding side-payments, 87 % of efficiency gains come from avoided conflicts. However, with non-binding side-payments, only 39 % of gains come from avoided conflicts and 61 % from reduced conflict expenditures

    Effects of 6-cyano-7-nitroquinoxaline-2,3-dione on nicotinic receptor subunit transcript expression in the rat brain

    Full text link
    The nicotinic cholinergic system exerts potent modulatory effects on glutamatergic neurotransmission, an effect mediated in part by increased glutamate release following activation of presynaptic nicotinic cholinergic receptors. Ionotropic glutamate receptor agonists also stimulate release of acetylcholine, suggesting that these neurotransmitter systems reciprocally regulate one another. We investigated an interface between the nicotinic cholinergic and glutamatergic systems by measuring nicotinic receptor subunit transcript expression following administration of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), an antagonist of the AMPA and kainate subtypes of glutamate receptors. Using [ 35 S] in situ hybridization, we measured expression of Α2, Α3, Α4, Α5, Α7, Β2, Β3, and Β4 nicotinic receptor subunit transcripts in the rat forebrain. Following 7 days of treatment with vehicle or CNQX (1 mg/kg/day or 10 mg/kg/day), changes in nicotinic receptor subunit transcript expression were restricted to subunits that form heteromeric receptors. We found increased levels of transcripts for Α2 and Β2 nicotinic receptor subunits in the hippocampus, decreased Α4 subunit transcripts in the medial habenula and amygdala, and increased Β2 subunit transcripts in the septum and piriform cortex. We did not detect changes in expression of transcripts for the Α7 subunit, which forms homomeric nicotinic receptors. Our findings indicate that expression of nicotinic cholinergic receptor subunit transcripts are regulated in a subunit- and region-specific fashion by CNQX, an antagonist of non-NMDA ionotropic glutamate receptors. Synapse 52:62–72, 2004. © 2004 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34997/1/20003_ftp.pd

    An archaeal compound as a driver of Parkinson’s disease pathogenesis

    Get PDF
    Patients with Parkinson’s disease (PD) exhibit differences in their gut microbiomes compared to healthy individuals. Although differences have most commonly been described in the abundances of bacterial taxa, changes to viral and archaeal populations have also been observed. Mechanistic links between gut microbes and PD pathogenesis remain elusive but could involve molecules that promote α-synuclein aggregation. Here, we show that 2-hydroxypyridine (2-HP) represents a key molecule for the pathogenesis of PD. We observe significantly elevated 2-HP levels in faecal samples from patients with PD or its prodrome, idiopathic REM sleep behaviour disorder (iRBD), compared to healthy controls. 2-HP is correlated with the archaeal species Methanobrevibacter smithii and with genes involved in methane metabolism, and it is detectable in isolate cultures of M. smithii. We demonstrate that 2-HP is selectively toxic to transgenic α-synuclein overexpressing yeast and increases α-synuclein aggregation in a yeast model as well as in human induced pluripotent stem cell derived enteric neurons. It also exacerbates PD-related motor symptoms, α-synuclein aggregation, and striatal degeneration when injected intrastriatally in transgenic mice overexpressing human α-synuclein. Our results highlight the effect of an archaeal molecule in relation to the gut-brain axis, which is critical for the diagnosis, prognosis, and treatment of PD.
    corecore