2,712 research outputs found
Mean field theory for collective motion of quantum meson fields
Mean field theory for the time evolution of quantum meson fields is studied
in terms of the functional Schroedinger picture with a time-dependent Gaussian
variational wave functional. We first show that the equations of motion for the
variational wavefunctional can be rewritten in a compact form similar to the
Hartree-Bogoliubov equations in quantum many-body theory and this result is
used to recover the covariance of the theory. We then apply this method to the
O(N) model and present analytic solutions of the mean field evolution equations
for an N-component scalar field. These solutions correspond to quantum
rotations in isospin space and represent generalizations of the classical
solutions obtained earlier by Anselm and Ryskin. As compared to classical
solutions new effects arise because of the coupling between the average value
of the field and its quantum fluctuations. We show how to generalize these
solutions to the case of mean field dynamics at finite temperature. The
relevance of these solutions for the observation of a coherent collective state
or a disoriented chiral condensate in ultra-relativistic nuclear collisions is
discussed.Comment: 31 pages, 2 Postscript figures, uses ptptex.st
Influence of oxidative stress, diaphragm fatigue, and inspiratory muscle training on the plasma cytokine response to maximum sustainable voluntary ventilation
The influence of oxidative stress, diaphragm fatigue, and inspiratory muscle training (IMT) on the cytokine response to maximum sustainable voluntary ventilation (MSVV) is unknown. Twelve healthy males were divided equally into an IMT or placebo (PLA) group, and before and after a 6-wk intervention they undertook, on separate days, 1h of (1) passive rest and (2) MSVV, whereby participants undertook volitional hyperpnea at rest that mimicked the breathing and respiratory muscle recruitment patterns commensurate with heavy cycling exercise. Plasma cytokines remained unchanged during passive rest. There was a main effect of time (P < 0.01) for plasma interleukin-1 (IL-1) and interleukin-6 (IL-6) concentrations and a strong trend (P = 0.067) for plasma interleukin-1 receptor antagonist concentration during MSVV. Plasma IL-6 concentration was reduced after IMT by 27 + 18% (main effect of intervention, P = 0.029), whereas there was no change after PLA (P = 0.753). There was no increase in a systemic marker of oxidative stress [DNA damage in peripheral blood mononuclear cells (PBMC)], and diaphragm fatigue was not related to the increases in plasma IL-1 and IL-6 concentrations. A dose-response relationship was observed between respiratory muscle work and minute ventilation and increases in plasma IL-6 concentration. In conclusion, increases in plasma IL-1 and IL-6 concentrations during MSVV were not due to diaphragm fatigue or DNA damage in PBMC. Increases in plasma IL-6 concentration during MSVV are attenuated following IMT, and the plasma IL-6 response is dependent upon the level of respiratory muscle work and minute ventilation
Electron-hole bilayer quantum dots: Phase diagram and exciton localization
We studied a vertical ``quantum dot molecule'', where one of the dots is
occupied with electrons and the other with holes. We find that different phases
occur in the ground state, depending on the carrier density and the interdot
distance. When the system is dominated by shell structure, orbital degeneracies
can be removed either by Hund's rule, or by Jahn-Teller deformation. Both
mechanisms can lead to a maximum of the addition energy at mid-shell. At low
densities and large interdot distances, bound electron-hole pairs are formed.Comment: 10 pages, 3 figure
Influence of heavy modes on perturbations in multiple field inflation
We investigate linear cosmological perturbations in multiple field
inflationary models where some of the directions are light while others are
heavy (with respect to the Hubble parameter). By integrating out the massive
degrees of freedom, we determine the multi-dimensional effective theory for the
light degrees of freedom and give explicitly the propagation matrix that
replaces the effective sound speed of the one-dimensional case. We then examine
in detail the consequences of a sudden turn along the inflationary trajectory,
in particular the possible breakdown of the low energy effective theory in case
the heavy modes are excited. Resorting to a new basis in field space, instead
of the usual adiabatic/entropic basis, we study the evolution of the
perturbations during the turn. In particular, we compute the power spectrum and
compare with the result obtained from the low energy effective theory.Comment: 24 pages, 13 figures; v2 substantial changes in sec.V; v3 matching
the published version on JCA
Quantum fields in disequilibrium: neutral scalar bosons with long-range, inhomogeneous perturbations
Using Schwinger's quantum action principle, dispersion relations are obtained
for neutral scalar mesons interacting with bi-local sources. These relations
are used as the basis of a method for representing the effect of interactions
in the Gaussian approximation to field theory, and it is argued that a marked
inhomogeneity, in space-time dependence of the sources, forces a discrete
spectrum on the field. The development of such a system is characterized by
features commonly associated with chaos and self-organization (localization by
domain or cell formation). The Green functions play the role of an iterative
map in phase space. Stable systems reside at the fixed points of the map. The
present work can be applied to self-interacting theories by choosing suitable
properties for the sources. Rapid transport leads to a second order phase
transition and anomalous dispersion. Finally, it is shown that there is a
compact representation of the non-equilibrium dynamics in terms of generalized
chemical potentials, or equivalently as a pseudo-gauge theory, with an
imaginary charge. This analogy shows, more clearly, how dissipation and entropy
production are related to the source picture and transform a flip-flop like
behaviour between two reservoirs into the Landau problem in a constant
`magnetic field'. A summary of conventions and formalism is provided as a basis
for future work.Comment: 23 pages revte
Gene set of nuclear-encoded mitochondrial regulators is enriched for common inherited variation in obesity
There are hints of an altered mitochondrial function in obesity. Nuclear-encoded genes are relevant for mitochondrial function (3 gene sets of known relevant pathways: (1) 16 nuclear regulators of mitochondrial genes, (2) 91 genes for oxidative phosphorylation and (3) 966 nuclear-encoded mitochondrial genes). Gene set enrichment analysis (GSEA) showed no association with type 2 diabetes mellitus in these gene sets. Here we performed a GSEA for the same gene sets for obesity. Genome wide association study (GWAS) data from a case-control approach on 453 extremely obese children and adolescents and 435 lean adult controls were used for GSEA. For independent confirmation, we analyzed 705 obesity GWAS trios (extremely obese child and both biological parents) and a population-based GWAS sample (KORA F4, n = 1,743). A meta-analysis was performed on all three samples. In each sample, the distribution of significance levels between the respective gene set and those of all genes was compared using the leading-edge-fraction-comparison test (cut-offs between the 50(th) and 95(th) percentile of the set of all gene-wise corrected p-values) as implemented in the MAGENTA software. In the case-control sample, significant enrichment of associations with obesity was observed above the 50(th) percentile for the set of the 16 nuclear regulators of mitochondrial genes (p(GSEA,50) = 0.0103). This finding was not confirmed in the trios (p(GSEA,50) = 0.5991), but in KORA (p(GSEA,50) = 0.0398). The meta-analysis again indicated a trend for enrichment (p(MAGENTA,50) = 0.1052, p(MAGENTA,75) = 0.0251). The GSEA revealed that weak association signals for obesity might be enriched in the gene set of 16 nuclear regulators of mitochondrial genes
Imbibition in Disordered Media
The physics of liquids in porous media gives rise to many interesting
phenomena, including imbibition where a viscous fluid displaces a less viscous
one. Here we discuss the theoretical and experimental progress made in recent
years in this field. The emphasis is on an interfacial description, akin to the
focus of a statistical physics approach. Coarse-grained equations of motion
have been recently presented in the literature. These contain terms that take
into account the pertinent features of imbibition: non-locality and the
quenched noise that arises from the random environment, fluctuations of the
fluid flow and capillary forces. The theoretical progress has highlighted the
presence of intrinsic length-scales that invalidate scale invariance often
assumed to be present in kinetic roughening processes such as that of a
two-phase boundary in liquid penetration. Another important fact is that the
macroscopic fluid flow, the kinetic roughening properties, and the effective
noise in the problem are all coupled. Many possible deviations from simple
scaling behaviour exist, and we outline the experimental evidence. Finally,
prospects for further work, both theoretical and experimental, are discussed.Comment: Review article, to appear in Advances in Physics, 53 pages LaTe
A systematic study of J/psi suppression in cold nuclear matter
Based on a Glauber model, a statistical analysis of all mid-rapidity J/psi
hadroproduction and leptoproduction data on nuclear targets is carried out.
This allows us to determine the J/psi-nucleon inelastic cross section, whose
knowledge is crucial to interpret the J/psi suppression observed in heavy-ion
collisions, at SPS and at RHIC. The values of sigma are extracted from each
experiment. A clear tension between the different data sets is reported. The
global fit of all data gives sigma=3.4+/-0.2 mb, which is significantly smaller
than previous estimates. A similar value, sigma=3.5+/-0.2 mb, is obtained when
the nDS nuclear parton densities are included in the analysis, although we
emphasize that the present uncertainties on gluon (anti)shadowing do not allow
for a precise determination of sigma. Finally, no significant energy dependence
of the J/psi-N interaction is observed, unless strong nuclear modifications of
the parton densities are assumed.Comment: 25 pages, 5 figure
A Dynamic Model of Interactions of Ca^(2+), Calmodulin, and Catalytic Subunits of Ca^(2+)/Calmodulin-Dependent Protein Kinase II
During the acquisition of memories, influx of Ca^(2+) into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca^(2+) influx during the first few seconds of activity is interpreted within the Ca^(2+)-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity, including Ca^(2+)/calmodulin-dependent protein kinase II (CaMKII), are regulated by calmodulin, a small protein that can bind up to 4 Ca^(2+) ions. As a first step toward clarifying how the Ca^(2+)-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca^(2+), calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca^(2+) play a significant role in activation of CaMKII in the physiological regime, supporting the notion that processing ofCa^(2+) signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca^(2+) is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca^(2+) transients arises from the kinetics of interaction of fluctuating Ca^(2+) with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic models of postsynaptic signal transduction during learning
Interplay between magnetism and superconductivity and appearance of a second superconducting transition in alpha-FeSe at high pressure
We synthesized tetragonal alpha-FeSe by melting a powder mixture of iron and
selenium at high pressure. Subsequent annealing at normal pressure results in
removing traces of hexagonal beta- FeSe, formation of a rather sharp transition
to superconducting state at Tc ~ 7 K, and the appearance of a magnetic
transition near Tm = 120 K. Resistivity and ac-susceptibility were measured on
the annealed sample at hydrostatic pressure up to 4.5 GPa. A magnetic
transition visible in ac-susceptibility shifts down under pressure and the
resistive anomaly typical for a spin density wave (SDW) antiferromagnetic
transition develops near the susceptibility anomaly. Tc determined by the
appearance of a diamagnetic response in susceptibility, increases linearly
under pressure at a rate dTc/dP = 3.5 K/GPa. Below 1.5 GPa, the resistive
superconducting transition is sharp; the width of transition does not change
with pressure; and, Tc determined by a peak in drho/dT increases at a rate ~
3.5 K/GPa. At higher pressure, a giant broadening of the resistive transition
develops. This effect cannot be explained by possible pressure gradients in the
sample and is inherent to alpha-FeSe. The dependences drho(T)/dT show a
signature for a second peak above 3 GPa which is indicative of the appearance
of another superconducting state in alpha-FeSe at high pressure. We argue that
this second superconducting phase coexists with SDW antiferromagnetism in a
partial volume fraction and originates from pairing of charge carriers from
other sheets of the Fermi surface
- …
