12,270 research outputs found

    Realizing value from project implementation under uncertainty : an exploratory study using system dynamics

    Get PDF
    Project Implementation is not a trivial task even after careful planning and scheduling. One of the reasons is the existence of unexpected events at strategic and operational levels during the project execution process. This paper presents a system dynamics model of a project monitoring and control system. Embedded with both strategic and tactical uncertainties, the model experiments with typical remedial actions to disturbances during the implementation of a project under a behavioral paradigm. Simple proportional adjustment seems to work well under low levels of unexpected disturbances but prospect theory-based behavior works better under extreme situations. Our findings indicate over-reacting behavior, which is influenced by biases and reporting errors, can generate project escalation. Thus, thresholds for remedial actions should be implemented in project control and monitoring systems to avoid over-reacting behavior leading to escalation and waste of resources

    Quantum Criticality and Global Phase Diagram of Magnetic Heavy Fermions

    Full text link
    Quantum criticality describes the collective fluctuations of matter undergoing a second-order phase transition at zero temperature. It is being discussed in a number of strongly correlated electron systems. A prototype case occurs in the heavy fermion metals, in which antiferromagnetic quantum critical points have been explicitly observed. Here, I address two types of antiferromagnetic quantum critical points. In addition to the standard description based on the fluctuations of the antiferromagnetic order, a local quantum critical point is also considered. It contains inherently quantum modes that are associated with a critical breakdown of the Kondo effect. Across such a quantum critical point, there is a sudden collapse of a large Fermi surface to a small one. I also consider the proximate antiferromagnetic and paramagnetic phases, and these considerations lead to a global phase diagram. Finally, I discuss the pertinent experiments on the antiferromagnetic heavy fermions, briefly address the case of ferromagnetic heavy fermions, and outline some directions for future studies.Comment: (v2) reference added, and typos corrected; (v1) 10 pages, 2 figures, based on a plenary talk given at the International Conference on Quantum Criticality and Novel Phases (QCNP09, Dresden

    Hartmann's Procedure or Primary Anastomosis?

    Get PDF
    Perforation following acute diverticulitis is a typical scenario during the first attack. Different classification systems exist to classify acute perforated diverticulitis. While the Hinchey classification, which is based on intraoperative findings, is internationally best known, the German Hansen-Stock classification which is based on CT scan is widely accepted within Germany. When surgery is necessary, sigmoid colectomy is the standard of care. An important question is whether patients should receive primary anastomosis or a Hartmann procedure subsequently. A priori there are several arguments for both procedures. Hartmann's operation is extremely safe and, therefore, represents the best option in severely ill patients and/or extensive peritonitis. However, this operation carries a high risk of stoma nonreversal, or, when reversal is attempted, a high risk in terms of morbidity and mortality. In contrast, primary anastomosis with or without loop ileostoma is a slightly more lengthy procedure as normally the splenic flexure needs to be mobilized and construction of the anastomosis may consume more time than the Hartmann operation. The big advantage of primary anastomosis, however, is that there is no need for the potentially risky stoma reversal operation. The most interesting question is when to do the Hartmann operation or primary anastomosis. Several comparative case series were published showing that primary anastomosis is feasible in many patients. However, no randomized trial is available to date. It is of note, that all non-randomized case series are biased, i.e. that patients in better condition received anastomosis and those with severe peritonitis underwent Hartmann's operation. This bias is undoubtedly likely to be present, even if not obvious, in the published papers! Our own data suggest that this decision should not be based on the extent of peritonitis but rather on patient condition and comorbidity. In conclusion, sigmoid colectomy and primary anastomosis is feasible and safe in many patients who need surgery for perforated diverticulitis, particularly when combined with loop ileostomy. Based on our own published analysis, however, we recommend performing Hartmann's operation in severely ill patients who carry substantial comorbidity, while the extent of peritonitis appears not to be of predominant importance. Copyright (C) 2012 S. Karger AG, Base

    Detuning effects in the one-photon mazer

    Full text link
    The quantum theory of the mazer in the non-resonant case (a detuning between the cavity mode and the atomic transition frequencies is present) is written. The generalization from the resonant case is far from being direct. Interesting effects of the mazer physics are pointed out. In particular, it is shown that the cavity may slow down or speed up the atoms according to the sign of the detuning and that the induced emission process may be completely blocked by use of a positive detuning. It is also shown that the detuning adds a potential step effect not present at resonance and that the use of positive detunings defines a well-controlled cooling mechanism. In the special case of a mesa cavity mode function, generalized expressions for the reflection and transmission coefficients have been obtained. The general properties of the induced emission probability are finally discussed in the hot, intermediate and cold atom regimes. Comparison with the resonant case is given.Comment: 9 pages, 8 figure

    Hall-effect evolution across a heavy-fermion quantum critical point

    Full text link
    A quantum critical point (QCP) develops in a material at absolute zero when a new form of order smoothly emerges in its ground state. QCPs are of great current interest because of their singular ability to influence the finite temperature properties of materials. Recently, heavy-fermion metals have played a key role in the study of antiferromagnetic QCPs. To accommodate the heavy electrons, the Fermi surface of the heavy-fermion paramagnet is larger than that of an antiferromagnet. An important unsolved question concerns whether the Fermi surface transformation at the QCP develops gradually, as expected if the magnetism is of spin density wave (SDW) type, or suddenly as expected if the heavy electrons are abruptly localized by magnetism. Here we report measurements of the low-temperature Hall coefficient (RHR_H) - a measure of the Fermi surface volume - in the heavy-fermion metal YbRh2Si2 upon field-tuning it from an antiferromagnetic to a paramagnetic state. RHR_H undergoes an increasingly rapid change near the QCP as the temperature is lowered, extrapolating to a sudden jump in the zero temperature limit. We interpret these results in terms of a collapse of the large Fermi surface and of the heavy-fermion state itself precisely at the QCP.Comment: 20 pages, 3 figures; to appear in Natur

    Critical magnetic fluctuations induced superconductivity and residual density of states in CeRhIn5CeRhIn_5 superconductor

    Full text link
    We propose the multiband extension of the spin-fermion model to address the superconducting d-wave pairing due to magnetic interaction near critical point. We solve the unrestricted gap equation with a general d-wave symmetry gap and find that divergent magnetic correlation length ξ\xi leads to the very unharmonic shape of the gap function with shallow gap regions near nodes. These regions are extremely sensitive to disorder. Small impurity concentration induces substantial residual density of states. We argue that we can understand the large Nres(0)=limT0Cp(T)/TN_{res}(0) = \lim_{T\to 0} C_p(T)/T value and its pressure dependence of the recently discovered CeRhIn5CeRhIn_5 superconductor under pressure within this approach.Comment: 5 figure

    TiO₂-coated electrodes for pulsed electric field treatment of microorganisms

    Get PDF
    Pulsed electric fields (PEF) can cause irreversible damage to bio-membranes and may result in inactivation of microorganisms. The aim of this paper is to investigate the PEF treatment of the yeast Saccharomyces cerevisiae, using a novel treatment cell with parallel-plane electrodes coated with a 2 µm thin TiO2 film. Two different PEF waveforms, square and exponential, with magnitudes of 67 kV/cm and 80 kV/cm, were used in this study. The efficacy of the PEF treatment was assessed by comparison of the surviving treated and untreated yeast populations, and it was shown that a treatment cell with TiO2-coated electrodes can be successfully used for the PEF treatment of microorganisms: 3-log10 reduction in the yeast population was achieved with 100 impulses. The energy efficacy of the PEF process in the proposed treatment cell has been compared with the energy losses in the PEF treatment cell with uncoated, conductive electrodes. It is shown that the electrodes coated with TiO2 provide better performance as compared with the traditional uncoated electrodes

    Fermi-Surface Reconstruction in the Periodic Anderson Model

    Full text link
    We study ground state properties of periodic Anderson model in a two-dimensional square lattice with variational Monte Carlo method. It is shown that there are two different types of quantum phase transition: a conventional antiferromagnetic transition and a Fermi-surface reconstruction which accompanies a change of topology of the Fermi surface. The former is induced by a simple back-folding of the Fermi surface while the latter is induced by localization of ff electrons. The mechanism of these transitions and the relation to the recent experiments on Fermi surface are discussed in detail.Comment: 8 pages, 7 figures, submitted to Journal of the Physical Society of Japa
    corecore