241 research outputs found
Device for continuous extracorporeal blood purification using target-specific metal nanomagnets
Background. The present work illustrates how magnetic separation-based blood purification using ultra-strong iron nanomagnets can be implemented into an extracorporeal blood purification circuit. By this promising technique, today's blood purification may be extended to specifically filter high-molecular compounds without being limited by filter cut-offs or column surface saturation. Methods. Blood spiked with digoxin (small molecule drug) and interleukin-1β (inflammatory protein) was circulated ex vivo through a device composed of approved blood transfusion lines. Target-specific nanomagnets were continuously injected and subsequently recovered with the aid of a magnetic separator before recirculating the blood. Results. Magnetic blood purification was successfully carried out under flow conditions: already in single-pass experiments, removal efficiencies reached values of 75 and 40% for digoxin and interleukin-1β, respectively. Circulating 0.5 L of digoxin-intoxicated blood in a closed loop, digoxin concentration was decreased from initially toxic to therapeutic concentrations within 30 min and purification extents of 90% were achieved after 1.5 h. Conclusions. Magnetic separation can be successfully implemented into an extracorporeal blood purification device. Simultaneous and specific filtering of high-molecular compounds may offer promising new therapeutic tools for the future treatment of complex diseases, such as sepsis and autoimmune disorder
Effects of sevoflurane and its metabolite hexafluoroisopropanol on hypoxia/reoxygenation-induced injury and mitochondrial bioenergetics in murine cardiomyocytes
Background
The volatile anaesthetic sevoflurane protects cardiac tissue from reoxygenation/reperfusion. Mitochondria play an essential role in conditioning. We aimed to investigate how sevoflurane and its primary metabolite hexafluoroisopropanol (HFIP) affect necrosis, apoptosis, and reactive oxygen species formation in cardiomyocytes upon hypoxia/reoxygenation injury. Moreover, we aimed to describe the similarities in the mode of action in a mitochondrial bioenergetics analysis.
Methods
Murine cardiomyocytes were exposed to hypoxia (0.2% O2 for 6 h), followed by reoxygenation (air with 5% CO2 for 2 h) in the presence or absence sevoflurane 2.2% or HFIP 4 mM. Lactate dehydrogenase (LDH) release (necrosis), caspase activation (apoptosis), reactive oxygen species, mitochondrial membrane potential, and mitochondrial function (Seahorse XF analyser) were measured.
Results
Hypoxia/reoxygenation increased cell death by 44% (+31 to +55%, P<0.001). Reoxygenation in the presence of sevoflurane 2.2% or HFIP 4 mM increased LDH release only by +18% (+6 to +30%) and 20% (+7 to +32%), respectively. Apoptosis and reactive oxygen species formation were attenuated by sevoflurane and HFIP. Mitochondrial bioenergetics analysis of the two substances was profoundly different. Sevoflurane did not influence oxygen consumption rate (OCR) or extracellular acidification rate (ECAR), whereas HFIP reduced OCR and increased ECAR, an effect similar to oligomycin, an adenosine triphosphate (ATP) synthase inhibitor. When blocking the metabolism of sevoflurane into HFIP, protective effects of sevoflurane – but not of HFIP – on LDH release and caspase were mitigated.
Conclusion
Together, our data suggest that sevoflurane metabolism into HFIP plays an essential role in cardiomyocyte postconditioning after hypoxia/reoxygenation injury
Measurements of the branching fractions of B+→ppK+ decays
The branching fractions of the decay B+ → pp̄K+ for different intermediate states are measured using data, corresponding to an integrated luminosity of 1.0 fb-1, collected by the LHCb experiment. The total branching fraction, its charmless component Mpp̄ < 2.85 GeV/c2 and the branching fractions via the resonant cc̄ states η c(1S) and ψ(2S) relative to the decay via a J/ψ intermediate state are [Equation not available: see fulltext.] Upper limits on the B + branching fractions into the η c(2S) meson and into the charmonium-like states X(3872) and X(3915) are also obtained
Differential branching fraction and angular analysis of the decay B0→K∗0μ+μ−
The angular distribution and differential branching fraction of the decay B 0→ K ∗0 μ + μ − are studied using a data sample, collected by the LHCb experiment in pp collisions at s√=7 TeV, corresponding to an integrated luminosity of 1.0 fb−1. Several angular observables are measured in bins of the dimuon invariant mass squared, q 2. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q20=4.9±0.9GeV2/c4 , where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
Designing a Bayesian adaptive clinical trial to evaluate novel mechanical ventilation strategies in acute respiratory failure using Integrated Nested Laplace Approximations
Background: We aimed to design a Bayesian adaption trial through extensive
simulations to determine values for key design parameters, demonstrate error
rates, and establish the expected sample size. The complexity of the proposed
outcome and analysis meant that Markov Chain Monte Carlo methods were required,
resulting in an infeasible computational burden. Thus, we leveraged the
Integrated Nested Laplace Approximations (INLA) algorithm, a fast approximation
method, to ensure the feasibility of these simulations. Methods: We simulated
Bayesian adaptive two-arm superiority trials that stratified participants into
two disease severity states. The outcome was analyzed with proportional odds
logistic regression. Trials were stopped for superiority or futility,
separately for each state. We calculated the type I error and power across 64
scenarios that varied the stopping thresholds and the minimum sample size
before commencing adaptive analyses. We incorporated dynamic borrowing and used
INLA to compute the posterior distributions at each adaptive analysis. Designs
that maintained a type I error below 5%, a power above 80%, and a feasible mean
sample size were then evaluated across 22 scenarios that varied the odds ratios
for the two severity states. Results: Power generally increased as the initial
sample size and the threshold for declaring futility increased. Two designs
were selected for further analysis. In the comprehensive simulations, the one
design had a higher chance of reaching a trial conclusion before the maximum
sample size and higher probability of declaring superiority when appropriate
without a substantial increase in sample size for the more realistic scenarios
and was selected as the trial design. Conclusions: We designed a Bayesian
adaptive trial to evaluate novel strategies for ventilation using the INLA
algorithm to and optimize the trial design through simulation
Differential branching fraction and angular analysis of the decay B0s→ ϕμ+μ−
The determination of the differential branching fraction and the first angular analysis of the decay B[superscript 0][subscript 0] → ϕμ[superscript +]μ[subscript −] are presented using data, corresponding to an integrated luminosity of 1.0 fb[superscript −1], collected by the LHCb experiment at s√=7s=7 TeV. The differential branching fraction is determined in bins of q[superscript 2], the invariant dimuon mass squared. Integration over the full q[superscript 2] range yields a total branching fraction of B(B[superscript 0][subscript s]→ϕμ[superscript +]μ[subscript −])=(7.07[superscript +0.64][subscript −0.59]±0.71±0.71)) × 10[subscript −7], where the first uncertainty is statistical, the second systematic, and the third originates from the branching fraction of the normalisation channel. An angular analysis is performed to determine the angular observables F[subscript L], S[subscript 3], A[subscript 6], and A[subscript 9]. The observables are consistent with Standard Model expectations.National Science Foundation (U.S.
- …
