2,066 research outputs found

    Heaping, Secondary Flows and Broken Symmetry in Flows of Elongated Granular Particles

    Get PDF
    In this paper we report experiments where we shear granular rods in split-bottom geometries, and find that a significant heap of height of least 40% of the filling height can form at the particle surface. We show that heaping is caused by a significant secondary flow, absent for spherical particles. Flow reversal transiently reverses the secondary flow, leading to a quick collapse and slower regeneration of the heap. We present a symmetry argument and experimental data that show that the generation of the secondary flow is driven by a misalignment of the mean particle orientation with the streamlines of the flow. This general mechanism is expected to be important in all flows of sufficiently anisometric grains.Comment: Accepted for Soft Matte

    The asymmetric single-impurity Anderson model - the modified perturbation theory

    Full text link
    We investigate the single-impurity Anderson model by means of the recently introduced modified perturbation theory. This approximation scheme yields reasonable results away from the symmetric case. The agreement with exactly known results for the symmetric case is checked, and results for the non-symmetric case are presented. With decreasing conduction band occupation, the breakdown of the screening of the local moment is observed. In the crossover regime between Kondo limit and mixed-valence regime, an enhanced zero-temperature susceptibility is found.Comment: 7 pages, 7 figures, to appear in Physica

    Innate versus adaptive immunity in sticklebacks: evidence for trade-offs from a selection experiment

    Get PDF
    In vertebrates, the immune system consists of two arms of different characteristics: the innate and the acquired immune response. Parasites that are only shortly exposed to the immune system are most efficiently attacked by fast, constitutive innate immune mechanisms. Here, we experimentally selected within four fish families for high innate resistance versus susceptibility of three-spined sticklebacks (Gasterosteus aculeatus) against infection with the eye-fluke (Diplostomum pseudospathacaeum), a parasite whose metacercariae are protected from the immune system within the eye lens. We predicted that in families with high susceptibility, the adaptive immune system would be upregulated when challenged with infection. In accordance, we found that MHC class IIB expression is increased by approximately 50% in those lines selected for higher parasite load (i.e. low innate response). This suggests extensive genetic correlations between innate and adaptive immune system and/or crosstalk between both lines of defense. An efficient, specific innate immune response might reduce overall activation of the immune system and potentially alleviate associated effects of immunopatholog

    Learning Aerial Image Segmentation from Online Maps

    Get PDF
    This study deals with semantic segmentation of high-resolution (aerial) images where a semantic class label is assigned to each pixel via supervised classification as a basis for automatic map generation. Recently, deep convolutional neural networks (CNNs) have shown impressive performance and have quickly become the de-facto standard for semantic segmentation, with the added benefit that task-specific feature design is no longer necessary. However, a major downside of deep learning methods is that they are extremely data-hungry, thus aggravating the perennial bottleneck of supervised classification, to obtain enough annotated training data. On the other hand, it has been observed that they are rather robust against noise in the training labels. This opens up the intriguing possibility to avoid annotating huge amounts of training data, and instead train the classifier from existing legacy data or crowd-sourced maps which can exhibit high levels of noise. The question addressed in this paper is: can training with large-scale, publicly available labels replace a substantial part of the manual labeling effort and still achieve sufficient performance? Such data will inevitably contain a significant portion of errors, but in return virtually unlimited quantities of it are available in larger parts of the world. We adapt a state-of-the-art CNN architecture for semantic segmentation of buildings and roads in aerial images, and compare its performance when using different training data sets, ranging from manually labeled, pixel-accurate ground truth of the same city to automatic training data derived from OpenStreetMap data from distant locations. We report our results that indicate that satisfying performance can be obtained with significantly less manual annotation effort, by exploiting noisy large-scale training data.Comment: Published in IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSIN

    Hybridisation at the organic-metal interface: a surface-scientific analogue of H\"uckel's rule?

    Full text link
    We demonstrate that cyclooctatetraene (COT) can be stabilised in different conformations when adsorbed on different noble-metal surfaces due to varying molecule-substrate interaction. While at first glance the behaviour seems to be in accordance with H\"uckel's rule, a theoretical analysis reveals no significant charge transfer. The driving mechanism for the conformational change is hybridisation at the organic-metal interface and does not necessitate any charge transfer.Comment: Accepted for publication in Chemical Communications. Main article: 6 pages, 2 figures; Supplementary Information: 4 pages, 3 figures, 1 table. All in one fil

    Correlation of eigenstates in the critical regime of quantum Hall systems

    Full text link
    We extend the multifractal analysis of the statistics of critical wave functions in quantum Hall systems by calculating numerically the correlations of local amplitudes corresponding to eigenstates at two different energies. Our results confirm multifractal scaling relations which are different from those occurring in conventional critical phenomena. The critical exponent corresponding to the typical amplitude, α02.28\alpha_0\approx 2.28, gives an almost complete characterization of the critical behavior of eigenstates, including correlations. Our results support the interpretation of the local density of states being an order parameter of the Anderson transition.Comment: 17 pages, 9 Postscript figure

    Semantically Informed Multiview Surface Refinement

    Full text link
    We present a method to jointly refine the geometry and semantic segmentation of 3D surface meshes. Our method alternates between updating the shape and the semantic labels. In the geometry refinement step, the mesh is deformed with variational energy minimization, such that it simultaneously maximizes photo-consistency and the compatibility of the semantic segmentations across a set of calibrated images. Label-specific shape priors account for interactions between the geometry and the semantic labels in 3D. In the semantic segmentation step, the labels on the mesh are updated with MRF inference, such that they are compatible with the semantic segmentations in the input images. Also, this step includes prior assumptions about the surface shape of different semantic classes. The priors induce a tight coupling, where semantic information influences the shape update and vice versa. Specifically, we introduce priors that favor (i) adaptive smoothing, depending on the class label; (ii) straightness of class boundaries; and (iii) semantic labels that are consistent with the surface orientation. The novel mesh-based reconstruction is evaluated in a series of experiments with real and synthetic data. We compare both to state-of-the-art, voxel-based semantic 3D reconstruction, and to purely geometric mesh refinement, and demonstrate that the proposed scheme yields improved 3D geometry as well as an improved semantic segmentation

    Access to metastable complex ion conductors via mechanosynthesis: Preparation, microstructure and conductivity of (Ba,Sr)LiF3 with inverse perovskite structure

    Get PDF
    Highly metastable Ba1−xSrxLiF3 (0 < x ≤ xmax ≈ 0.4) with an inverse perovskite structure analogous to that of BaLiF3 was synthesized by soft mechanical treatment of BaF2 and LiF together with SrF2 at ambient temperature. Ex as well as in situX-ray powder diffraction (XRPD) measurements show that heat treatment at 393 K initiates the decomposition of the mixed phase into BaLiF3, LiF and (Sr,Ba)F2. Structural details of the metastable compound (Ba,Sr)LiF3 were investigated by ultrafast 19F magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. Interestingly, five magnetically inequivalent F sites were identified which correspond to fluorine anions coordinated by a variable number of Ba and Sr cations, respectively. Details from XRPD and NMR spectroscopy are discussed with respect to the formation mechanisms and thermal stability of the as prepared fluorides. Impedance spectroscopy is used to characterize (long-range) ionic transport properties. Results are compared with those obtained recently on mechanosynthesized BaLiF3

    Operating Power Grids with Few Flow Control Buses

    Full text link
    Future power grids will offer enhanced controllability due to the increased availability of power flow control units (FACTS). As the installation of control units in the grid is an expensive investment, we are interested in using few controllers to achieve high controllability. In particular, two questions arise: How many flow control buses are necessary to obtain globally optimal power flows? And if fewer flow control buses are available, what can we achieve with them? Using steady state IEEE benchmark data sets, we explore experimentally that already a small number of controllers placed at certain grid buses suffices to achieve globally optimal power flows. We present a graph-theoretic explanation for this behavior. To answer the second question we perform a set of experiments that explore the existence and costs of feasible power flow solutions at increased loads with respect to the number of flow control buses in the grid. We observe that adding a small number of flow control buses reduces the flow costs and extends the existence of feasible solutions at increased load.Comment: extended version of an ACM e-Energy 2015 poster/workshop pape
    corecore