1,096 research outputs found
On mediums with negative phase velocity: a brief overview
Several issues relating to oppositely directed phase velocity and power flow
are reviewed. A necessary condition for the occurrence of this phenomenon in
isotropic dielectric-magnetic mediums is presented. Ramifications for
aberration-free lenses, homogenization approaches, and complex mediums are
discussed.Comment: 7 pages, will be presented at Complex Mediums III (Annual Meeting of
SPIE, Seattle, WA, July 7-11, 2002
The negative index of refraction demystified
We study electromagnetic wave propagation in mediums in which the effective
relative permittivity and the effective relative permeability are allowed to
take any value in the upper half of the complex plane. A general condition is
derived for the phase velocity to be oppositely directed to the power flow.
That extends the recently studied case of propagation in mediums for which the
relative permittivity and relative permeability are both simultaneously
negative, to include dissipation as well. An illustrative case study
demonstrates that in general the spectrum divides into five distinct regions.Comment: 5 pages, 4 figure
Model-Based Security Testing
Security testing aims at validating software system requirements related to
security properties like confidentiality, integrity, authentication,
authorization, availability, and non-repudiation. Although security testing
techniques are available for many years, there has been little approaches that
allow for specification of test cases at a higher level of abstraction, for
enabling guidance on test identification and specification as well as for
automated test generation.
Model-based security testing (MBST) is a relatively new field and especially
dedicated to the systematic and efficient specification and documentation of
security test objectives, security test cases and test suites, as well as to
their automated or semi-automated generation. In particular, the combination of
security modelling and test generation approaches is still a challenge in
research and of high interest for industrial applications. MBST includes e.g.
security functional testing, model-based fuzzing, risk- and threat-oriented
testing, and the usage of security test patterns. This paper provides a survey
on MBST techniques and the related models as well as samples of new methods and
tools that are under development in the European ITEA2-project DIAMONDS.Comment: In Proceedings MBT 2012, arXiv:1202.582
Towards Symbolic Model-Based Mutation Testing: Combining Reachability and Refinement Checking
Model-based mutation testing uses altered test models to derive test cases
that are able to reveal whether a modelled fault has been implemented. This
requires conformance checking between the original and the mutated model. This
paper presents an approach for symbolic conformance checking of action systems,
which are well-suited to specify reactive systems. We also consider
nondeterminism in our models. Hence, we do not check for equivalence, but for
refinement. We encode the transition relation as well as the conformance
relation as a constraint satisfaction problem and use a constraint solver in
our reachability and refinement checking algorithms. Explicit conformance
checking techniques often face state space explosion. First experimental
evaluations show that our approach has potential to outperform explicit
conformance checkers.Comment: In Proceedings MBT 2012, arXiv:1202.582
Measurement of beauty-strange meson production in Pb–Pb collisions at sNN=5.02TeV via non-prompt Ds + mesons
The production yields of non-prompt D_s^+ mesons, namely D_s^+ mesons from beauty-hadron decays, were measured for the first time as a function of the transverse momentum (pT) at midrapidity (|y| phi pi+, with phi -> K+ K-, in the 4 < pT < 36 GeV/c and 2 < pT < 24 GeV/c intervals for the 0–10% and 30–50% centrality classes, respectively. The measured yields of non-prompt D_S^+ mesons are compared to those of prompt D_s^+ and non-prompt D0 mesons by calculating the ratios of the production yields in Pb–Pb collisions and the nuclear modification factor RAA. The ratio between the RAA of non-prompt D_s^+ and prompt D_s^+ mesons, and that between the RAA of non-prompt D_s^+ and non-prompt D0 mesons in central Pb–Pb collisions are found to be on average higher than unity in the 4 < pT < 12 GeV/c interval with a statistical significance of about 1.6 sigma and 1.7 sigma, respectively. The measured RAA ratios are compared with the predictions of theoretical models of heavy-quark transport in a hydrodynamically expanding QGP that incorporate hadronisation via quark recombination
First Measurement of Antideuteron Number Fluctuations at Energies Available at the Large Hadron Collider
The first measurement of event-by-event antideuteron number fluctuations in high energy heavy-ion collisions is presented. The measurements are carried out at midrapidity (1?1 < 0.8) as a function of collision centrality in Pb-Pb collisions atv (NN)-N-s= 5.02 TeV using the ALICE detector. A significant negative correlation between the produced antiprotons and antideuterons is observed in all collision centralities. The results are compared with a state-of-the-art coalescence calculation. While it describes the ratio of higher order cumulants of the antideuteron multiplicity distribution, it fails to describe quantitatively the magnitude of the correlation between antiproton and antideuteron production. On the other hand, thermal-statistical model calculations describe all the measured observables within uncertainties only for correlation volumes that are different with respect to those describing proton yields and a similar measurement of net-proton number fluctuations
Measurement of the low-energy antitriton inelastic cross section
In this Letter, the first measurement of the inelastic cross section for antitriton–nucleus interactions is reported, covering the momentum range of 0.8 ≤ p < 2.4 GeV/c. The measurement is carried out using data recorded with the ALICE detector in pp and Pb–Pb collisions at a centre-of-mass energy per nucleon of 13 TeV and 5.02 TeV, respectively. The detector material serves as an absorber for antitriton nuclei. The raw yield of (anti)triton nuclei measured with the ALICE apparatus is compared to the results from detailed ALICE simulations based on the GEANT4 toolkit for the propagation of (anti)particles through matter, allowing one to quantify the inelastic interaction probability in the detector material. This analysis complements the measurement of the inelastic cross section of antinuclei up to A=3 carried out by the ALICE Collaboration, and demonstrates the feasibility of the study of the isospin dependence of inelastic interaction cross section with the analysis techniques presented in this Letter
Modification of charged-particle jets in event-shape engineered Pb-Pb collisions at √SNN=5.02 TeV
Charged-particle jet yields have been measured in semicentral Pb–Pb collisions at center-of-mass energy per nucleon–nucleon collision sNN=5.02 TeV with the ALICE detector at the LHC. These yields are reported as a function of the jet transverse momentum, and further classified by their angle with respect to the event plane and the event shape, characterized by ellipticity, in an effort to study the path-length dependence of jet quenching. Jets were reconstructed at midrapidity from charged-particle tracks using the anti-kT algorithm with resolution parameters R = 0.2 and 0.4, with event-plane angle and event-shape values determined using information from forward scintillating detectors. The results presented in this letter show that, in semicentral Pb–Pb collisions, there is no significant difference between jet yields in predominantly isotropic and elliptical events. However, out-of-plane jets are observed to be more suppressed than in-plane jets. Further, this relative suppression is greater for low transverse momentum (< 50 GeV/c) R = 0.2 jets produced in elliptical events, with out-of-plane to in-plane jet-yield ratios varying up to 5.2σ between different event-shape classes. These results agree with previous studies indicating that jets experience azimuthally anisotropic suppression when traversing the QGP medium, and can provide additional constraints on the path-length dependence of jet energy loss
Towards the understanding of the genuine three-body interaction for p–p–p and p–p–
Three-body nuclear forces play an important role
in the structure of nuclei and hypernuclei and are also incor-
porated in models to describe the dynamics of dense baryonic
matter, such as in neutron stars. So far, only indirect mea-
surements anchored to the binding energies of nuclei can be
used to constrain the three-nucleon force, and if hyperons
are considered, the scarce data on hypernuclei impose only
weak constraints on the three-body forces. In this work, we
present the first direct measurement of the p–p–p and p–p–Lambda
systems in terms of three-particle correlation functions car-
ried out for pp collisions at √s = 13 TeV. Three-particle
cumulants are extracted from the correlation functions by
applying the Kubo formalism, where the three-particle inter-
action contribution to these correlations can be isolated after
subtracting the known two-body interaction terms. A nega-
tive cumulant is found for the p–p–p system, hinting to the
presence of a residual three-body effect while for p–p–Lambda the
cumulant is consistent with zero. This measurement demon-
strates the accessibility of three-baryon correlations at the
LHC
Observation of abnormal suppression of f0(980) production in p-Pb collisions at √sNN=5.02 TeV
The dependence of f0(980) production on the final-state charged-particle multiplicity in p–Pb collisions at sNN=5.02 TeV is reported. The production of f0(980) is measured with the ALICE detector via the f0(980)→π+π− decay channel in a midrapidity region of −0.5<0. Particle yield ratios of f0(980) to π and K⁎(892)0 are found to be decreasing with increasing charged-particle multiplicity. The magnitude of the suppression of the f0(980)/π and f0(980)/K⁎(892)0 yield ratios is found to be dependent on the transverse momentum pT, suggesting different mechanisms responsible for the measured effects. Furthermore, the nuclear modification factor QpPb of f0(980) is measured in various multiplicity ranges. The QpPb shows a strong suppression of the f0(980) production in the pT region up to about 4 GeV/c. The results on the particle yield ratios and QpPb for f0(980) may help to understand the late hadronic phase in p–Pb collisions and the nature of the internal structure of f0(980) particle
- …
