2,085 research outputs found
School Based Responses to Non-Suicidal Self Injury and Suicide: Literature Considerations When Framing a Policy Response
Deliberate Non-Suicidal Self Injury (NSSI) and suicide present distinct but related concerns for schools. An Australian study of over 6,300 families containing children/ adolescents aged 4 to 17 years found that one in 10 young people had engaged with NSSI – with three quarters of this cohort having harmed themselves in the previous twelve months (Lawrence, 2015). The same study found that within the 12 to 17 year old age group, one in 13 individuals had considered suicide in the previous 12 months, with one in 40 having made attempts (Lawrence, 2015). This article seeks to articulate key themes from literature that demand consideration by schools seeking to construct their own framework or pastoral response, balancing the prioritization of student safety whilst also attending to the realities of staff competencies. Given the age group presented in the Lawrence (2015) study, it should not be surprising that adolescents in the school context may disclosure the presence of intrusive thoughts pertaining to at-risk behaviours. Consequently, schools are well placed to deliver prevention services and simultaneously, need to be prepared to respond to situations of NSSI and suicide attempts. Drawing on the expertise of staff from an Edmund Rice Education Australia (EREA) school located in Brisbane, this paper draws links to existing policy determinants of pastoral care from within this Catholic school, whilst considering the issue of risk-to-self with relevant themes organized according to the three action areas outlined by the Queensland Suicide Action Prevention Plan (Queensland Mental Health Commission, 2015) namely: prevention; intervention; and postvention
Atom laser coherence and its control via feedback
We present a quantum-mechanical treatment of the coherence properties of a
single-mode atom laser. Specifically, we focus on the quantum phase noise of
the atomic field as expressed by the first-order coherence function, for which
we derive analytical expressions in various regimes. The decay of this function
is characterized by the coherence time, or its reciprocal, the linewidth. A
crucial contributor to the linewidth is the collisional interaction of the
atoms. We find four distinct regimes for the linewidth with increasing
interaction strength. These range from the standard laser linewidth, through
quadratic and linear regimes, to another constant regime due to quantum
revivals of the coherence function. The laser output is only coherent (Bose
degenerate) up to the linear regime. However, we show that application of a
quantum nondemolition measurement and feedback scheme will increase, by many
orders of magnitude, the range of interaction strengths for which it remains
coherent.Comment: 15 pages, 6 figures, revtex
The impact of resources on decision making
Decision making is a significant activity within industry and although much attention has been paid to the manner in which goals impact on how decision making is executed, there has been less focus on the impact decision making resources can have. This article describes an experiment that sought to provide greater insight into the impact that resources can have on how decision making is executed. Investigated variables included the experience levels of decision makers and the quality and availability of information resources. The experiment provided insights into the variety of impacts that resources can have upon decision making, manifested through the evolution of the approaches, methods, and processes used within it. The findings illustrated that there could be an impact on the decision-making process but not on the method or approach, the method and process but not the approach, or the approach, method, and process. In addition, resources were observed to have multiple impacts, which can emerge in different timescales. Given these findings, research is suggested into the development of resource-impact models that would describe the relationships existing between the decision-making activity and resources, together with the development of techniques for reasoning using these models. This would enhance the development of systems that could offer improved levels of decision support through managing the impact of resources on decision making
Control of an atom laser using feedback
A generalised method of using feedback to control Bose-Einstein condensates
is introduced. The condensates are modelled by the Gross-Pitaevskii equation,
so only semiclassical fluctations can be suppressed, and back-action from the
measurement is ignored. We show that for any available control, a feedback
scheme can be found to reduce the energy while the appropriate moment is still
dynamic. We demonstrate these schemes by considering a condensate trapped in a
harmonic potential that can be modulated in strength and position. The
formalism of our feedback scheme also allows the inclusion of certain types of
non-linear controls. If the non-linear interaction between the atoms can be
controlled via a Feshbach resonance, we show that the feedback process can
operate with a much higher efficiency.Comment: 6 pages, 7 figure
Mode Selectivity and Stability of Continuously Pumped Atom Lasers
A semiclassical, multimode model of a continuously pumped atom laser is presented. For a spatially independent coupling process it is found that the system is unstable below a critical scattering length. As large atomic interactions will increase the phase diffusion of the lasing mode, it is desirable to obtain a stable atom laser with low nonlinearity. It is shown that spatially dependent pumping stabilizes the atom laser to a finite number of modes, and can induce single-mode operation
Quasiparticle entanglement: redefinition of the vacuum and reduced density matrix approach
A scattering approach to entanglement in mesoscopic conductors with
independent fermionic quasiparticles is discussed. We focus on conductors in
the tunneling limit, where a redefinition of the quasiparticle vacuum
transforms the wavefunction from a manybody product state of noninteracting
particles to a state describing entangled two-particle excitations out of the
new vacuum. The approach is illustrated with two examples (i) a
normal-superconducting system, where the transformation is made between
Bogoliubov-de Gennes quasiparticles and Cooper pairs, and (ii) a normal system,
where the transformation is made between electron quasiparticles and
electron-hole pairs. This is compared to a scheme where an effective
two-particle state is derived from the manybody scattering state by a reduced
density matrix approach.Comment: Submitted to New Journal of Physics, Focused Issue on "Solid State
Quantum Information". 19 pages, 7 figure
Dual black holes in merger remnants. II: spin evolution and gravitational recoil
Using high resolution hydrodynamical simulations, we explore the spin
evolution of massive dual black holes orbiting inside a circumnuclear disc,
relic of a gas-rich galaxy merger. The black holes spiral inwards from
initially eccentric co or counter-rotating coplanar orbits relative to the
disc's rotation, and accrete gas that is carrying a net angular momentum. As
the black hole mass grows, its spin changes in strength and direction due to
its gravito-magnetic coupling with the small-scale accretion disc. We find that
the black hole spins loose memory of their initial orientation, as accretion
torques suffice to align the spins with the angular momentum of their orbit on
a short timescale (<1-2 Myr). A residual off-set in the spin direction relative
to the orbital angular momentum remains, at the level of <10 degrees for the
case of a cold disc, and <30 degrees for a warmer disc. Alignment in a cooler
disc is more effective due to the higher coherence of the accretion flow near
each black hole that reflects the large-scale coherence of the disc's rotation.
If the massive black holes coalesce preserving the spin directions set after
formation of a Keplerian binary, the relic black hole resulting from their
coalescence receives a relatively small gravitational recoil. The distribution
of recoil velocities inferred from a simulated sample of massive black hole
binaries has median <70 km/s much smaller than the median resulting from an
isotropic distribution of spins.Comment: 11 pages, 3 figures. Accepted for publication in MNRA
Atom-optics hologram in the time domain
The temporal evolution of an atomic wave packet interacting with object and
reference electromagnetic waves is investigated beyond the weak perturbation of
the initial state. It is shown that the diffraction of an ultracold atomic beam
by the inhomogeneous laser field can be interpreted as if the beam passes
through a three-dimensional hologram, whose thickness is proportional to the
interaction time. It is found that the diffraction efficiency of such a
hologram may reach 100% and is determined by the duration of laser pulses. On
this basis a method for reconstruction of the object image with matter waves is
offered.Comment: RevTeX, 13 pages, 8 figures; minor grammatical change
Recommended from our members
ADC Nonlinearity Correction for the Majorana Demonstrator
Imperfections in analog-to-digital conversion (ADC) cannot be ignored when signal digitization requirements demand both wide dynamic range and high resolution, as is the case for the Majorana Demonstrator 76Ge neutrinoless double-beta decay search. Enabling the experiment's high-resolution spectral analysis and efficient pulse shape discrimination required careful measurement and correction of ADC nonlinearities. A simple measurement protocol was developed that did not require sophisticated equipment or lengthy data-taking campaigns. A slope-dependent hysteresis was observed and characterized. A correction applied to digitized waveforms prior to signal processing reduced the differential and integral nonlinearities by an order of magnitude, eliminating these as dominant contributions to the systematic energy uncertainty at the double-beta decay Q value
Cosmological Perturbations in a Big Crunch/Big Bang Space-time
A prescription is developed for matching general relativistic perturbations
across singularities of the type encountered in the ekpyrotic and cyclic
scenarios i.e. a collision between orbifold planes. We show that there exists a
gauge in which the evolution of perturbations is locally identical to that in a
model space-time (compactified Milne mod Z_2) where the matching of modes
across the singularity can be treated using a prescription previously
introduced by two of us. Using this approach, we show that long wavelength,
scale-invariant, growing-mode perturbations in the incoming state pass through
the collision and become scale-invariant growing-mode perturbations in the
expanding hot big bang phase.Comment: 47 pages, 4 figure
- …
