845 research outputs found

    Minor Nuisance Around Foreign Exchange Markets - Lessons from the Stability and Growth Pact Debate

    Full text link
    This paper studies the impact of political events that systematically undermined the Stability and Growth Pact (SGP) on the euro's foreign exchange expectation bias for the period 2001 to 2005. Our findings suggest that euro foreign exchange markets were attentive to the political dispute over the enforcement of the SGP's rules. The results indicate that foreign exchange markets anticipated the gradual demise of the SGP. 1) For the expectation bias in euro foreign exchange markets we do not find systematic level effects. 2) Since volatility decreases following 'destabilising' political events, we conclude that already in the early years of the SGP regime the demise of the original Pact was anticipated by foreign exchange market participants. The conclusion is that a politicised multilateral fiscal rule does not improve market discipline, which could be a crucial argument against the new 'European Fiscal Compact'

    The Credit Rating Market - Options for Appropriate Regulation

    Full text link
    The principal agent problem is one of the major issues of the credit rating agency market. Is it possible to solve the prevailing incentive problem of the market and contemporaneously satisfy the reputation demand of the investors? This paper presents an option for regulating the credit rating agency market more effectively. The market shall be coordinated through a central allocation office, which is acting as a mediator between both contractual parties. The paper develops a game theoretical approach that considers reputation as one of the most important aspects within the market. After analysing the status quo two policy options are discussed on a game theoretical basis. The main result is that the incorporation of a mediator, which awards the contracts based on a lottery drawing, would help to solve conflicts of interests. The incentive to inflate ratings decreases significantly. Moreover, rating shopping option becomes impossible. Two possible positive side effects for smaller CRAs and new incumbents are the increase of market share as well as reputation. Therefore, the market competition should be affected positively, too

    Market Discipline Under A Politicised Multilateral Fiscal Rule - Lessons from the Stability and Growth Pact Debate

    Full text link
    Does a multilateral fiscal rule improve market discipline in a monetary union? This paper studies the impact of political events that systematically undermined the Stability and Growth Pact (SGP) on EMU sovereign default risk for the period 2001 to 2005. For various EMU member countries our findings suggest that credit risk did not increase in the SGP's early years in response to the political undermining of the Pact. Due to the existence of systematic volatility effects we conclude that from its beginning the Pact was not perceived as a credible institution by financial markets. Bond markets have not been the watchdogs the proponents of transparency enhancing fiscal rules frequently claim them to be. Investors did not anticipate any serious consequences arriving from political non-ownership of the Pact and corresponding fiscal leeway on national public finances in the euro zone back then. In this context, policymakers working on a reform of Europe's fiscal framework should abstain from enhancing multilateral fiscal rules lacking political ownership, including the reformed SGP and the new 'European Fiscal Compact'

    Deficiency of UBR1, a ubiquitin ligase of the N-end rule pathway, causes pancreatic dysfunction, malformations and mental retardation (Johanson-Blizzard syndrome)

    Get PDF
    Johanson-Blizzard syndrome (OMIM 243800) is an autosomal recessive disorder that includes congenital exocrine pancreatic insufficiency, multiple malformations such as nasal wing aplasia, and frequent mental retardation1. We mapped the disease-associated locus to chromosome 15q14–21.1 and identified mutations, mostly truncating ones, in the gene UBR1 in 12 unrelated families with Johanson-Blizzard syndrome. UBR1 encodes one of at least four functionally overlapping E3 ubiquitin ligases of the N-end rule pathway, a conserved proteolytic system whose substrates include proteins with destabilizing N-terminal residues. Pancreas of individuals with Johanson-Blizzard syndrome did not express UBR1 and had intrauterine-onset destructive pancreatitis. In addition, we found that Ubr1-/- mice, whose previously reported phenotypes include reduced weight and behavioral abnormalities, had an exocrine pancreatic insufficiency, with impaired stimulus-secretion coupling and increased susceptibility to pancreatic injury. Our findings indicate that deficiency of UBR1 perturbs the pancreas' acinar cells and other organs, presumably owing to metabolic stabilization of specific substrates of the N-end rule pathway

    Ubiquitin Ligases of the N-End Rule Pathway: Assessment of Mutations in UBR1 That Cause the Johanson-Blizzard Syndrome

    Get PDF
    Background: Johanson-Blizzard syndrome (JBS; OMIM 243800) is an autosomal recessive disorder that includes congenital exocrine pancreatic insufficiency, facial dysmorphism with the characteristic nasal wing hypoplasia, multiple malformations, and frequent mental retardation. Our previous work has shown that JBS is caused by mutations in human UBR1, which encodes one of the E3 ubiquitin ligases of the N-end rule pathway. The N-end rule relates the regulation of the in vivo half-life of a protein to the identity of its N-terminal residue. One class of degradation signals (degrons) recognized by UBR1 are destabilizing N-terminal residues of protein substrates. Methodology/Principal Findings: Most JBS-causing alterations of UBR1 are nonsense, frameshift or splice-site mutations that abolish UBR1 activity. We report here missense mutations of human UBR1 in patients with milder variants of JBS. These single-residue changes, including a previously reported missense mutation, involve positions in the RING-H2 and UBR domains of UBR1 that are conserved among eukaryotes. Taking advantage of this conservation, we constructed alleles of the yeast Saccharomyces cerevisiae UBR1 that were counterparts of missense JBS-UBR1 alleles. Among these yeast Ubr1 mutants, one of them (H160R) was inactive in yeast-based activity assays, the other one (Q1224E) had a detectable but weak activity, and the third one (V146L) exhibited a decreased but significant activity, in agreement with manifestations of JBS in the corresponding JBS patients. Conclusions/Significance: These results, made possible by modeling defects of a human ubiquitin ligase in its yeast counterpart, verified and confirmed the relevance of specific missense UBR1 alleles to JBS, and suggested that a residual activity of a missense allele is causally associated with milder variants of JBS

    Behavioral phenotype in five individuals with de novo mutations within the GRIN2B gene

    Get PDF
    Background: Intellectual disability (ID) is often associated with behavioral problems or disorders. Mutations in the GRIN2B gene (MRD6, MIM613970) have been identified as a common cause of ID (prevalence of 0.5 – 1% in individuals with ID) associated with EEG and behavioral problems. Methods: We assessed five GRIN2B mutation carriers aged between 3 and 14 years clinically and via standardized questionnaires to delineate a detailed behavioral phenotype. Parents and teachers rated problem behavior of their affected children by completing the Developmental Behavior Checklist (DBC) and the Conners’ Rating Scales Revised (CRS-R:L). Results: All individuals had mild to severe ID and needed guidance in daily routine. They showed characteristic behavior problems with prominent hyperactivity, impulsivity, distractibility and a short attention span. Stereotypies, sleeping problems and a friendly but boundless social behavior were commonly reported. Conclusion: Our observations provide an initial delineation of the behavioral phenotype of GRIN2B mutation carriers

    Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling

    Get PDF
    Objective The generation of acinar and ductal cells from human pluripotent stem cells (PSCs) is a poorly studied process, although various diseases arise from this compartment. Design We designed a straightforward approach to direct human PSCs towards pancreatic organoids resembling acinar and ductal progeny. Results Extensive phenotyping of the organoids not only shows the appropriate marker profile but also ultrastructural, global gene expression and functional hallmarks of the human pancreas in the dish. Upon orthotopic transplantation into immunodeficient mice, these organoids form normal pancreatic ducts and acinar tissue resembling fetal human pancreas without evidence of tumour formation or transformation. Finally, we implemented this unique phenotyping tool as a model to study the pancreatic facets of cystic fibrosis (CF). For the first time, we provide evidence that in vitro, but also in our xenograft transplantation assay, pancreatic commitment occurs generally unhindered in CF. Importantly, cystic fibrosis transmembrane conductance regulator (CFTR) activation in mutated pancreatic organoids not only mirrors the CF phenotype in functional assays but also at a global expression level. We also conducted a scalable proof-of-concept screen in CF pancreatic organoids using a set of CFTR correctors and activators, and established an mRNA-mediated gene therapy approach in CF organoids. Conclusions Taken together, our platform provides novel opportunities to model pancreatic disease and development, screen for disease-rescuing agents and to test therapeutic procedures.This study was funded by the Deutsche Forschungsgemeinschaft (DFG, K.L. 2544/1-1 and 1-2), the Forschungskern SyStaR to AK, BIU (Böhringer Ingelheim Ulm to AK), the Fritz-Thyssen Foundation (Az. 10.15.2.040), the German Cancer Aid (111879) and the Else-Kröner-Fresenius-Stiftung (2011_A200). AK is indebted to the Baden-Württemberg Stiftung for the financial support of this research project by the Eliteprogramme for Postdocs. AK is also an Else-Kröner-Fresenius Memorial Fellow. LP is supported by a research fellowship of the Else-Kröner-Fresenius-Stiftung. MH was supported by the International Graduate School in Molecular Medicine and the Bausteinprogramme (L.SBN. 110), Ulm University. MM is supported by a grant of Ulm University (Baustein for Senior Clinician Scientists). IGC is funded by the Interdisciplinary Center for Clinical Research (IZKF Aachen) and Start Program, RWTH Aachen University Medical School, Aachen, German

    Corrigendum: Valenced action/inhibition learning in humans is modulated by a genetic variant linked to dopamine D2 receptor expression

    Get PDF
    Motivational salience plays an important role in shaping human behavior, but recent studies demonstrate that human performance is not uniformly improved by motivation. Instead, action has been shown to dominate valence in motivated tasks, and it is particularly difficult for humans to learn the inhibition of an action to obtain a reward, but the neural mechanism behind this behavioral specificity is yet unclear. In all mammals, including humans, the monoamine neurotransmitter dopamine is particularly important in the neural manifestation of appetitively motivated behavior, and the human dopamine system is subject to considerable genetic variability. The well-studied TaqIA restriction fragment length polymorphism (rs1800497) has previously been shown to affect striatal dopamine metabolism. In this study we investigated a potential effect of this genetic variation on motivated action/inhibition learning. Two independent cohorts consisting of 87 and 95 healthy participants, respectively, were tested using the previously described valenced go/no-go learning paradigm in which participants learned the reward-associated no-go condition significantly worse than all other conditions. This effect was modulated by the TaqIA polymorphism, with carriers of the A1 allele showing a diminished learning-related performance enhancement in the rewarded no-go condition compared to the A2 homozygotes. This result highlights a modulatory role for genetic variability of the dopaminergic system in individual learning differences of action-valence interaction
    corecore