361 research outputs found
MT-7716, a potent NOP receptor agonist, preferentially reduces ethanol seeking and reinforcement in post-dependent rats
Dysregulation of the nociceptin (N/OFQ) system has been implicated in alcohol abuse and alcoholism, and growing evidence suggests that targeting this system may be beneficial for treating alcoholism. To further explore the treatment target potential of the N/OFQ system, the novel non-peptide, small-molecule N/OFQ (NOP) agonist MT-7716, (R)-2-3-[1-(Acenaphthen-1-yl)piperidin-4-yl]-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl-N-methylacetamide hydrochloride hydrate, was examined for its effects on ethanol self-administration and stress-induced reinstatement of alcohol seeking in non-dependent and post-dependent rats. Male Wistar rats were trained to self-administer ethanol and then made ethanol dependent via repeated intragastric ethanol intubation. The effects of MT-7716 (0.3 and 1 mg/kg; PO) on alcohol self-administration were determined 2 weeks following dependence induction, when baseline self-administration was restored. Effects of MT-7716 on stress-induced reinstatement were tested in separate cohorts of rats, 1 and 3 weeks post-withdrawal. MT-7716 reduced alcohol self-administration and stress-induced reinstatement of alcohol seeking in post-dependent rats, but was ineffective in non-dependent animals. Moreover, the prevention of stress-induced reinstatement by MT-7716 was more pronounced at 3 weeks post-dependence. The results further confirm treatment target potential for the NOP receptor and identify non-peptide NOP agonists as promising potential treatment drugs for alcohol abuse and relapse prevention. The findings also support dysregulation of the N/OFQ system as a factor in alcohol seeking and reinforcement
Drug Seeking and Relapse: New Evidence of a Role for Orexin and Dynorphin Co-transmission in the Paraventricular Nucleus of the Thalamus
The long-lasting vulnerability to relapse remains the main challenge for the successful treatment of drug addiction. Neural systems that are involved in processing natural rewards and drugs of abuse overlap. However, neuroplasticity that is caused by drug exposure may be responsible for maladaptive, compulsive, and addictive behavior. The orexin (Orx) system participates in regulating numerous physiological processes, including energy metabolism, arousal, and feeding, and is recruited by drugs of abuse. The Orx system is differentially recruited by drugs and natural rewards. Specifically, we found that the Orx system is more engaged by drugs than by non-drugs, such as sweetened condensed milk (SCM) or a glucose saccharin solution (GSS), in an operant model of reward seeking. Although stimuli (S+) that are conditioned to cocaine (COC), ethanol, and SCM/GSS equally elicited reinstatement, Orx receptor blockade reversed conditioned reinstatement for drugs vs. non-drugs. Moreover, the hypothalamic recruitment of Orx cells was greater in rats that were tested with the COC S+ vs. SCM S+, indicating of a preferential role for the Orx system in perseverative, compulsive-like COC seeking and not behavior that is motivated by palatable food. Accumulating evidence indicates that the paraventricular nucleus of the thalamus (PVT), which receives major Orx projections, mediates drug-seeking behavior. All Orx neurons contain dynorphin (Dyn), and Orx and Dyn are co-released. In the VTA, they play opposing roles in reward and motivation. To fully understand the physiological and behavioral roles of Orx transmission in the PVT, one important consideration is that Orx neurons that project to the PVT may co-release Orx with another peptide, such as Dyn. The PVT expresses both Orx receptors and κ opioid receptors, suggesting that Orx and Dyn act in tandem when released in the PVT, in addition to the VTA. The present review discusses recent findings that suggest the maladaptive recruitment of Orx/Dyn-PVT neurotransmission by drugs of abuse vs. a highly palatable food reward
Neutrophil elastase activity is associated with exacerbations and lung function decline in Bronchiectasis
Rationale: Sputum neutrophil elastase and serum desmosine, a linked marker of endogenous elastin degradation, are possible biomarkers of disease severity and progression in bronchiectasis. This study aimed to determine the association of elastase activity and desmosine with exacerbations and lung function decline in bronchiectasis.Methods: This was a single-centre prospective cohort study using the TAYBRIDGE registry in Dundee, UK. 433 patients with HRCT-confirmed bronchiectasis provided blood samples for desmosine measurement and 381 provided sputum for baseline elastase activity measurements using an activity based immunosassay and fluorometric substrate assay. Candidate biomarkers were tested for their relationship with cross-sectional markers of disease severity, and with future exacerbations, mortality and lung function decline over 3-years.Results: Elastase activity in sputum was associated with the bronchiectasis severity index (r=0.49,p<0.0001) and also correlated with MRC dyspnoea score (r=0.34,p<0.0001), FEV1 % predicted (r=-0.33,p<0.0001) and the radiological extent of bronchiectasis (r=0.29,p<0.0001). During 3-years follow-up, elevated sputum elastase activity was associated with a higher frequency of exacerbations (p<0.0001) but was not independently associated with mortality. Sputum elastase activity was independently associated with FEV1 decline (beta coefficient -0.139,p=0.001). Elastase showed good discrimination for severe exacerbations AUC 0.75 (0.72-0.79) and all-cause mortality AUC 0.70 (0.67-0.73) Sputum elastase activity increased at exacerbation (p=0.001) and was responsive to treatment with antibiotics. Desmosine was correlated with sputum elastase (r=0.34,p<0.0001), and was associated with risk of severe exacerbations HR 2.7 (1.42-5.29),p=0.003, but not lung function decline.Conclusions: Sputum neutrophil elastase activity is a biomarker of disease severity and future risk in adults with bronchiectasis.</p
Differential regulation of mGlu5 R and ΜOPr by priming- and cue-induced reinstatement of cocaine-seeking behaviour in mice.
The key problem for the treatment of drug addiction is relapse to drug use after abstinence that can be triggered by drug-associated cues, re-exposure to the drug itself and stress. Understanding the neurobiological mechanisms underlying relapse is essential in order to develop effective pharmacotherapies for its prevention. Given the evidence implicating the metabotropic glutamate receptor 5 (mGlu5 R), μ-opioid receptor (MOPr), κ-opioid receptor (ΚOPr) and oxytocin receptor (OTR) systems in cocaine addiction and relapse, our aim was to assess the modulation of these receptors using a mouse model of cue- and priming-induced reinstatement of cocaine seeking. Male mice were trained to self-administer cocaine (1 mg/kg/infusion, i.v.) and were randomized into different groups: (1) cocaine self-administration; (2) cocaine extinction; (3) cocaine-primed (10 mg/kg i.p.); or (4) cue-induced reinstatement of cocaine seeking. Mice undergoing the same protocols but receiving saline instead of cocaine were used as controls. Quantitative autoradiography of mGlu5 R, MOPr, KOPr and OTR showed a persistent cocaine-induced upregulation of the mGlu5 R and OTR in the lateral septum and central amygdala, respectively. Moreover, a downregulation of mGlu5 R and MOPr was observed in the basolateral amygdala and striatum, respectively. Further, we showed that priming- but not cue-induced reinstatement upregulates mGlu5 R and MOPr binding in the nucleus accumbens core and basolateral amygdala, respectively, while cue- but not priming-induced reinstatement downregulates MOPr binding in caudate putamen and nucleus accumbens core. This is the first study to provide direct evidence of reinstatement-induced receptor alterations that are likely to contribute to the neurobiological mechanisms underpinning relapse to cocaine seeking
Neurokinin 1 receptor blockade in the medial amygdala attenuates alcohol drinking in rats with innate anxiety but not in Wistar rats
Background and Purpose: Substance P and its preferred neurokinin receptor NK1 have been implicated in stress and anxiety and have been proposed as possible therapeutic targets for the treatment of anxiety/depression. Attention is also being focused on the role this neuropeptide system may play in drug addiction, because stress-related mechanisms promote drug abuse. Experimental Approach: The effects of the rat-specific NK1 receptor antagonist, L822429, on alcohol intake and seeking behaviour was investigated in genetically selected Marchigian Sardinian alcohol preferring rats. These rats demonstrate an anxious phenotype and are highly sensitive to stress and stress-induced drinking. Key Results: Systemic administration of L822429 significantly reduced operant alcohol self-administration in Marchigian Sardinian alcohol preferring rats, but did not reduce alcohol self-administration in stock Wistar rats. NK1 receptor antagonism also attenuated yohimbine-induced reinstatement of alcohol seeking at all doses tested but had no effect on cue-induced reinstatement of alcohol seeking. L822429 reduced operant alcohol self-administration when injected into the lateral cerebroventricles or the medial amygdala. L822429 injected into the medial amygdala also significantly reduced anxiety-like behaviour in the elevated plus maze test. No effects on alcohol intake were observed following injection of L822429 into the dorsal or the ventral hippocampus. Conclusions and Implications Our results suggest that NK1 receptor antagonists may be useful for the treatment of alcohol addiction associated with stress or comorbid anxiety disorders. The medial amygdala appears to be an important brain site of action of NK1 receptor antagonism
Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress
In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse
Emerging targets for addiction neuropharmacology: From mechanisms to therapeutics
Drug abuse represents a considerable burden of disease and has enormous economic impacts on societies. Over the years, few medications have been developed for clinical use. Their utilization is endowed with several limitations, including partial efficacy or significant side effects. On the other hand, the successful advancement of these compounds provides an important proof of concept for the feasibility of drug development programs in addiction. In recent years, a wealth of information has been generated on the psychological mechanisms, genetic or epigenetic predisposing factors, and neurobiological adaptations induced by drug consumption that interact with each other to contribute to disease progression. It is now clear that addiction develops through phases, from initial recreational use to excessive consumption and compulsive drug seeking, with a shift from positive to negative reinforcement driving motivated behaviors. A greater understanding of these mechanisms has opened new vistas in drug development programs. Researchers' attention has been shifted from investigation of classical targets associated with reward to biological substrates responsible for negative reinforcement, impulse loss of control, and maladaptive mechanisms resulting from protracted drug use. From this research, several new biological targets for the development of innovative therapies have started to emerge. This chapter offers an overview of targets currently under scrutiny for the development of new medications for addiction. This work is not exhaustive but rather it provides a few examples of how this research has advanced in recent years by virtue of studies carried out in our laboratory
Preclinical evidence implicating corticotropin-releasing factor signaling in ethanol consumption and neuroadaptation
The results of many studies support the influence of the corticotropin-releasing factor (CRF) system on ethanol (EtOH) consumption and EtOH-induced neuroadaptations that are critical in the addiction process. This review summarizes the preclinical data in this area after first providing an overview of the components of the CRF system. This complex system involves hypothalamic and extra-hypothalamic mechanisms that play a role in the central and peripheral consequences of stressors, including EtOH and other drugs of abuse. In addition, several endogenous ligands and targets make up this system and show differences in their involvement in EtOH drinking and in the effects of chronic or repeated EtOH treatment. In general, genetic and pharmacological approaches paint a consistent picture of the importance of CRF signaling via type 1 CRF receptors (CRF1) in EtOH-induced neuroadaptations that result in higher levels of intake, encourage alcohol seeking during abstinence and alter EtOH sensitivity. Furthermore, genetic findings in rodents, non-human primates and humans have provided some evidence of associations of genetic polymorphisms in CRF-related genes with EtOH drinking, although additional data are needed. These results suggest that CRF1 antagonists have potential as pharmacotherapeutics for alcohol use disorders. However, given the broad and important role of these receptors in adaptation to environmental and other challenges, full antagonist effects may be too profound and consideration should be given to treatments with modulatory effects.The authors were supported by the Department of Veterans Affairs; NIH NIAAA grants P60AA010760, R24AA020245 and U01AA013519 and NIH NIDA grant P50DA018165, during the writing of this manuscript. The authors have no financial conflict of interest to disclose
Suvorexant, an FDA-approved dual orexin receptor antagonist, reduces oxycodone self-administration and conditioned reinstatement in male and female rats
Background: The Department of Health and Human Services reports that prescription pain reliever (e.g., oxycodone) misuse was initiated by 4,400 Americans each day in 2019. Amid the opioid crisis, effective strategies to prevent and treat prescription opioid use disorder (OUD) are pressing. In preclinical models, the orexin system is recruited by drugs of abuse, and blockade of orexin receptors (OX receptors) prevents drug-seeking behavior. The present study sought to determine whether repurposing suvorexant (SUV), a dual OX receptor antagonist marketed for the treatment of insomnia, can treat two features of prescription OUD: exaggerated consumption and relapse.Methods: Male and female Wistar rats were trained to self-administer oxycodone (0.15 mg/kg, i. v., 8 h/day) in the presence of a contextual/discriminative stimulus (SD) and the ability of SUV (0–20 mg/kg, p. o.) to decrease oxycodone self-administration was tested. After self-administration testing, the rats underwent extinction training, after which we tested the ability of SUV (0 and 20 mg/kg, p. o.) to prevent reinstatement of oxycodone seeking elicited by the SD.Results: The rats acquired oxycodone self-administration and intake was correlated with the signs of physical opioid withdrawal. Additionally, females self-administered approximately twice as much oxycodone as males. Although SUV had no overall effect on oxycodone self-administration, scrutiny of the 8-h time-course revealed that 20 mg/kg SUV decreased oxycodone self-administration during the first hour in males and females. The oxycodone SD elicited strong reinstatement of oxycodone-seeking behavior that was significantly more robust in females. Suvorexant blocked oxycodone seeking in males and reduced it in females.Conclusions: These results support the targeting of OX receptors for the treatment for prescription OUD and repurposing SUV as pharmacotherapy for OUD
Thalamic neuromodulation and its implications for executive networks
The thalamus is a key structure that controls the routing of information in the brain. Understanding modulation at the thalamic level is critical to understanding the flow of information to brain regions involved in cognitive functions, such as the neocortex, the hippocampus, and the basal ganglia. Modulators contribute the majority of synapses that thalamic cells receive, and the highest fraction of modulator synapses is found in thalamic nuclei interconnected with higher order cortical regions. In addition, disruption of modulators often translates into disabling disorders of executive behavior. However, modulation in thalamic nuclei such as the midline and intralaminar groups, which are interconnected with forebrain executive regions, has received little attention compared to sensory nuclei. Thalamic modulators are heterogeneous in regards to their origin, the neurotransmitter they use, and the effect on thalamic cells. Modulators also share some features, such as having small terminal boutons and activating metabotropic receptors on the cells they contact. I will review anatomical and physiological data on thalamic modulators with these goals: first, determine to what extent the evidence supports similar modulator functions across thalamic nuclei; and second, discuss the current evidence on modulation in the midline and intralaminar nuclei in relation to their role in executive function
- …
