320 research outputs found
Технология моделирования штормовых нагонов и ветрового волнения в Азовском море на неструктурированных сетках
Представлена технология численного моделирования штормовых нагонов и ветровых волн в Азовском море, объединяющая модель циркуляции вод ADCIRC и модель ветрового волнения SWAN. Обе модели реализованы на неструктурированной сетке и адаптированы для параллельных вычислений. Приведены результаты верификации численного алгоритма и анализ его чувствительности к вариациям входных параметров.Представлена технологія чисельного моделювання штормових нагонів і вітрових хвиль в Азовському морі, що об'єднує модель циркуляції вод ADCIRC і модель вітрового хвилювання SWAN. Обидві моделі реалізовані на неструктурованій сітці і адаптовані для паралельних обчислень. Наведено результати верифікації чисельного алгоритму і аналіз його чутливості до варіацій вхідних параметрів.The technology of numerical modeling of storm surge and wind waves in the Sea of Azov, unifying model of the ADCIRC ocean circulation model and SWAN wind waves model. Both models are implemented on unstructured mesh and adapted for parallel computing. The results numerical algorithm verification and analysis of its sensitivity to variations in input parameters are given
How do leaf and ecosystem measures of water-use efficiency compare?
The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by photosynthesis, while the water balance is dominated by transpiration, and both fluxes are controlled by plant stomatal conductance. The ratio between these fluxes, the plant wateruse efficiency (WUE), is a useful indicator of vegetation function. WUE can be estimated using several techniques, including leaf gas exchange, stable isotope discrimination, and eddy covariance. Here we compare global compilations of data for each of these three techniques. We show that patterns of variation in WUE across plant functional types (PFTs) are not consistent among the three datasets. Key discrepancies include the following: leaf-scale data indicate differences between needleleaf and broadleaf forests, but ecosystem-scale data do not; leaf-scale data indicate differences between C3 and C4 species, whereas at ecosystem scale there is a difference between C3 and C4 crops but not grasslands; and isotope-based estimates of WUE are higher than estimates based on gas exchange for most PFTs. Our study quantifies the uncertainty associated with different methods of measuring WUE, indicates potential for bias when using WUE measures to parameterize or validate models, and indicates key research directions needed to reconcile alternative measures of WUE
Optimal stomatal behaviour around the world
This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordStomatal conductance (g s) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of g s in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of g s that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed g s obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model and the leaf and wood economics spectrum. We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of g s across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.This research was supported by the Australian Research Council (ARC MIA Discovery Project 1433500-2012-14). A.R. was financially supported in part by The Next-Generation Ecosystem Experiments (NGEE-Arctic) project, which is supported by the Office of Biological and Environmental Research in the Department of Energy, Office of Science, and through the United States Department of Energy contract No. DE-AC02-98CH10886 to Brookhaven National Laboratory. M.O.d.B. acknowledges that the Brassica data were obtained within a research project financed by the Belgian Science Policy (OFFQ, contract number SD/AF/02) and coordinated by K. Vandermeiren at the Open-Top Chamber research facilities of CODA-CERVA (Tervuren, Belgium)
Major and trace element geochemistry of El Chichón volcano-hydrothermal system (Chiapas, México) in 2006-2007: implications for future geochemical monitoring
Isotopic, major and trace element composition studies for the crater lake, the Soap Pool and thermal springs at El Chichón volcano in November 2006-October 2007 confirm the complex relationship between annual rainfall distribution and crater lake volume and chemistry. In 2001, 2004 and 2007 high volume high-Cl lake may be related to reactivation of high discharge (>10 kg/s) saline near-neutral water from the Soap Pool boiling springs into the lake, a few months (~January) after the end of the rainy season (June-October). The peak lake volume occurred in March 2007 (~6 x 105 m3).
Agua Tibia 2 thermal springs discharge near the foot of the SW dome but their chemistry suggests a lower temperature regime, an enhanced water-rock interaction and basement contribution (evaporites and carbonates), anhydrite leaching from the 1982 pyroclastic deposits, rather than dome activity. New suggestions of crater lake seepage are evidenced by the Agua Caliente thermal springs.
Existing models on the “crater lake-Soap Pool spring” and the deep hydrothermal system are discussed. Chemical changes in the deep geothermal aquifer feeding the thermal springs may predict dome rise. Future volcanic surveillance should focus on spring chemistry variations, as well as crater lake monitoring
SurEau-Ecos v2.0: a trait-based plant hydraulics model for simulations of plant water status and drought-induced mortality at the ecosystem level
A widespread increase in tree mortality has been observed
around the globe, and this trend is likely to continue because of ongoing
climate-induced increases in drought frequency and intensity. This raises
the need to identify regions and ecosystems that are likely to experience
the most frequent and significant damage. We present SurEau-Ecos, a trait-based,
plant hydraulic model designed to predict tree desiccation and mortality at
scales from stand to region. SurEau-Ecos draws on the general principles of the SurEau model
but introduces a simplified representation of plant architecture and
alternative numerical schemes. Both additions were made to facilitate model
parameterization and large-scale applications. In SurEau-Ecos, the water fluxes from
the soil to the atmosphere are represented through two plant organs (a leaf
and a stem, which includes the volume of the trunk, roots and branches) as
the product of an interface conductance and the difference between water
potentials. Each organ is described by its symplasmic and apoplasmic
compartments. The dynamics of a plant's water status beyond the point of
stomatal closure are explicitly represented via residual transpiration flow,
plant cavitation and solicitation of plants' water reservoirs. In addition
to the “explicit” numerical scheme of SurEau, we implemented a “semi-implicit”
and “implicit” scheme. Both schemes led to a substantial gain in computing
time compared to the explicit scheme (>10 000 times), and
the implicit scheme was the most accurate. We also observed similar plant
water dynamics between SurEau-Ecos and SurEau but slight disparities in infra-daily
variations of plant water potentials, which we attributed to the differences
in the representation of plant architecture between models. A global model's
sensitivity analysis revealed that factors controlling plant desiccation
rates differ depending on whether leaf water potential is below or above the
point of stomatal closure. Total available water for the plant, leaf area
index and the leaf water potential at 50 % stomatal closure mostly drove
the time needed to reach stomatal closure. Once stomata are closed,
resistance to cavitation, residual cuticular transpiration and plant water
stocks mostly determined the time to hydraulic failure. Finally, we
illustrated the potential of SurEau-Ecos to simulate regional drought-induced mortality
over France. SurEau-Ecos is a promising tool to perform regional-scale predictions of
drought-induced hydraulic failure, determine the most vulnerable areas and
ecosystems to drying conditions, and assess the dynamics of forest
flammability.</p
One Stomatal Model to Rule Them All?:Toward Improved Representation of Carbon and Water Exchange in Global Models
Stomatal conductance schemes that optimize with respect to photosynthetic and hydraulic functions have been proposed to address biases in land-surface model (LSM) simulations during drought. However, systematic evaluations of both optimality-based and alternative empirical formulations for coupling carbon and water fluxes are lacking. Here, we embed 12 empirical and optimization approaches within a LSM framework. We use theoretical model experiments to explore parameter identifiability and understand how model behaviors differ in response to abiotic changes. We also evaluate the models against leaf-level observations of gas-exchange and hydraulic variables, from xeric to wet forest/woody species spanning a mean annual precipitation range of 361–3,286 mm yr−1. We find that models differ in how easily parameterized they are, due to: (a) poorly constrained optimality criteria (i.e., resulting in multiple solutions), (b) low influence parameters, (c) sensitivities to environmental drivers. In both the idealized experiments and compared to observations, sensitivities to variability in environmental drivers do not agree among models. Marked differences arise in sensitivities to soil moisture (soil water potential) and vapor pressure deficit. For example, stomatal closure rates at high vapor pressure deficit range between −45% and +70% of those observed. Although over half the new generation of stomatal schemes perform to a similar standard compared to observations of leaf-gas exchange, two models do so through large biases in simulated leaf water potential (up to 11 MPa). Our results provide guidance for LSM development, by highlighting key areas in need for additional experimentation and theory, and by constraining currently viable stomatal hypotheses
Optimal stomatal behaviour around the world
© 2015 Macmillan Publishers Limited. All rights reserved. Stomatal conductance (g s) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of g s in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of g s that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed g s obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model and the leaf and wood economics spectrum. We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of g s across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate
MEDFATE 2.9.3: a trait-enabled model to simulate Mediterranean forest function and dynamics at regional scales
Regional-level applications of dynamic vegetation models are challenging because they need to accommodate the variation in plant functional diversity, which requires moving away from broadly defined functional types. Different approaches have been adopted in the last years to incorporate a trait-based perspective into modeling exercises. A common parametrization strategy involves using trait data to represent functional variation between individuals while discarding taxonomic identity. However, this strategy ignores the phylogenetic signal of trait variation and cannot be employed when predictions for specific taxa are needed, such as in applications to inform forest management planning. An alternative strategy involves adapting the taxonomic resolution of model entities to that of the data source employed for large-scale initialization and estimating functional parameters from available plant trait databases, adopting diverse solutions for missing data and non-observable parameters. Here we report the advantages and limitations of this second strategy according to our experience in the development of MEDFATE (version 2.9.3), a novel cohort-based and trait-enabled model of forest dynamics, for its application over a region in the western Mediterranean Basin. First, 217 taxonomic entities were defined according to woody species codes of the Spanish National Forest Inventory. While forest inventory records were used to obtain some empirical parameter estimates, a large proportion of physiological, morphological, and anatomical parameters were matched to measured plant traits, with estimates extracted from multiple databases and averaged at the required taxonomic level. Estimates for non-observable key parameters were obtained using meta-modeling and calibration exercises. Missing values were addressed using imputation procedures based on trait covariation, taxonomic averages or both. The model properly simulated observed historical changes in basal area, with a performance similar to an empirical model trained for the same region. While strong efforts are still required to parameterize trait-enabled models for multiple taxa, and to incorporate intra-specific trait variability, estimation procedures such as those presented here can be progressively refined, transferred to other regions or models and iterated following data source changes by employing automated workflows. We advocate for the adoption of trait-enabled and population-structured models for regional-level projections of forest function and dynamics
Stem CO2 efflux and its contribution to ecosystem CO2 efflux decrease with drought in a Mediterranean forest stand
tThe rate of metabolic processes demanding energy in tree stems changes in relation with prevailing cli-matic conditions. Tree water availability can affect stem respiration through impacts on growth, phloemtransport or maintenance of diverse cellular processes, but little is known on this topic. Here we moni-tored seasonal changes in stem CO2efflux (Fs), radial growth, sap flow and non-structural carbohydrates intrees of Quercus ilex in a Mediterranean forest stand subjected since 2003 to either partial (33%) through-fall exclusion (E) or unchanged throughfall (C). Fsincreased exponentially during the day by an effectof temperature, although sap flow attenuated the increase in Fsduring the day time. Over the year, Fsalso increased exponentially with increasing temperatures, but Fscomputed at a standard temperatureof 15?C (F15s) varied by almost 4-fold among dates. F15swas the highest after periods of stem growth anddecreased as tree water availability decreased, similarly in C and E treatments. The decline in F15swas notlinked to a depletion of soluble sugars, which increased when water stress was higher. The proportionof ecosystem respiration attributed to the stems was highest following stem growth (23.3%) and lowestduring the peak of drought (6.5%). High within-year variability in F15smakes unadvisable to pool annualdata of Fsvs. temperature to model Fsat short time scales (hours to months) in Mediterranean-type for-est ecosystems. We demonstrate that water availability is an important factor governing stem CO2effluxand suggest that trees in Mediterranean environments acclimate to seasonal drought by reducing stemrespiration. Stem respiratory rates do not seem to change after a long-term increase in drought intensity,however
A study of karst hydrosystem recharge at the parcel scale, using modeling and correlation analysis - Low noise underground laboratory of Rustrel site
La caractérisation des flux d’eaux qui rechargent réellement les hydrosystèmes souterrains reste un frein à la compréhension du fonctionnement hydrogéologique des milieux souterrains. Lors d’événements pluvieux, quelle part de l’eau est évapo-transpirée ? Quelle part est temporairement stockée dans le sol ? Ces incertitudes sont particulièrement fortes dans le cas de la recharge des milieux hétérogènes tel que le karst. En général, les calculs de recharge des hydrosystèmes karstiques se basent sur une représentation simplifiée de l’évapotranspiration qui considère seulement le climat et pas le fonctionnement de la végétation. Dans cette étude, un modèle de végétation permettant de simuler les transferts d’eaux entre le sol et l’atmosphère en contexte forestier (le modèle CASTANEA), a été appliqué à une parcelle de Chêne vert. L’infiltration efficace (un indicateur de la recharge) estimé avec CASTANEA a été comparée à celle estimée par des approches classiques ainsi qu’à des séries long terme de flux d’eaux souterraines (9 années). Les résultats de cette analyse révèlent que l’infiltration efficace modélisée à partir d’un modèle de végétation comme CASTANEA est plus satisfaisante que les approches classiques ne tenant pas compte du fonctionnement de la végétation. Ce travail ouvre des perspectives intéressantes pour mieux tenir compte du fonctionnement de la végétation et de l’usage du sol sur la recharge des hydrosystèmes karstiques.Assessing the recharge of underground hydrosystems remains an obstacle to understand their hydrologeological functioning. During a rain event, which part of the rain is evapotranspired ? And how much is temporarily stored within the soil ? These questions are particularly relevant in heterogeneous media such as karst hydrosystems. Currently, the models used to compute recharge of karst hydrosystems, rely on simplistic formulations of evapotranspiration that do not account for vegetation functioning. In this study, we used the vegetation process based model CASTANEA, which is designed to compute water transfer between soil, plant and atmosphere. We computed effective infiltration (an index of recharge) with CASTANEA and with other classical approach (based on precipitation minus ETP), and for a welldocumented holm oak site in Provence. Our results provide evidences that effective infiltration computed with CASTANEA yield more satisfactory correlation with measured outflow than simulations based on the classical approach. Our results provide a promising way to improve the simulation of karst hydrosystem recharge
- …
