683 research outputs found
Automatic identification of informative regions with epigenomic changes associated to hematopoiesis
Hematopoiesis is one of the best characterized biological systems but the connection between chromatin changes and lineage differentiation is not yet well understood. We have developed a bioinformatic workflow to generate a chromatin space that allows to classify 42 human healthy blood epigenomes from the BLUEPRINT, NIH ROADMAP and ENCODE consortia by their cell type. This approach let us to distinguish different cells types based on their epigenomic profiles, thus recapitulating important aspects of human hematopoiesis. The analysis of the orthogonal dimension of the chromatin space identify 32,662 chromatin determinant regions (CDRs), genomic regions with different epigenetic characteristics between the cell types. Functional analysis revealed that these regions are linked with cell identities. The inclusion of leukemia epigenomes in the healthy hematological chromatin sample space gives us insights on the healthy cell types that are more epigenetically similar to the disease samples. Further analysis of tumoral epigenetic alterations in hematopoietic CDRs points to sets of genes that are tightly regulated in leukemic transformations and commonly mutated in other tumors. Our method provides an analytical approach to study the relationship between epigenomic changes and cell lineage differentiation. Method availability: https://github.com/david-juan/ChromDet.European Union’s Seventh Framework Programme [FP7/2007–2013, 282510 (BLUEPRINT)]; Spanish Ministry
of Economy, Industry and Competitiveness and European Regional Development Fund [Project Retos BFU2015–71241-R]. Funding for open access charge: Project Retos BFU2015–71241-R (to A.V.).Peer ReviewedPostprint (published version
A comprehensive microarray-based DNA methylation study of 367 hematological neoplasms
Background: Alterations in the DNA methylation pattern are a hallmark of leukemias and lymphomas. However, most epigenetic studies in hematologic neoplasms (HNs) have focused either on the analysis of few candidate genes or many genes and few HN entities, and comprehensive studies are required. Methodology/Principal Findings: Here, we report for the first time a microarray-based DNA methylation study of 767 genes in 367 HNs diagnosed with 16 of the most representative B-cell (n = 203), T-cell (n = 30), and myeloid (n = 134) neoplasias, as well as 37 samples from different cell types of the hematopoietic system. Using appropriate controls of B-, T-, or myeloid cellular origin, we identified a total of 220 genes hypermethylated in at least one HN entity. In general, promoter hypermethylation was more frequent in lymphoid malignancies than in myeloid malignancies, being germinal center mature B-cell lymphomas as well as B and T precursor lymphoid neoplasias those entities with highest frequency of gene-associated DNA hypermethylation. We also observed a significant correlation between the number of hypermethylated and hypomethylated genes in several mature B-cell neoplasias, but not in precursor B- and T-cell leukemias. Most of the genes becoming hypermethylated contained promoters with high CpG content, and a significant fraction of them are targets of the polycomb repressor complex. Interestingly, T-cell prolymphocytic leukemias show low levels of DNA hypermethylation and a comparatively large number of hypomethylated genes, many of them showing an increased gene expression. Conclusions/Significance: We have characterized the DNA methylation profile of a wide range of different HNs entities. As well as identifying genes showing aberrant DNA methylation in certain HN subtypes, we also detected six genes—DBC1, DIO3, FZD9, HS3ST2, MOS, and MYOD1—that were significantly hypermethylated in B-cell, T-cell, and myeloid malignancies. These might therefore play an important role in the development of different HNs
Chromosomal abnormalities clustering in multiple myeloma reveals cytogenetic subgroups with nonrandom acquisition of chromosomal changes
Epigenetic Signatures Associated with Different Levels of Differentiation Potential in Human Stem Cells
The therapeutic use of multipotent stem cells depends on their differentiation potential, which has been
shown to be variable for different populations. These differences are likely to be the result of key changes in their epigenetic
profiles
Deregulation of the telomerase reverse transcriptase (TERT) gene by chromosomal translocations in B-cell malignancies
Sequence variants at the TERT-CLPTM1L locus in chromosome 5p have been recently associated with disposition for various cancers. Here we show that this locus including the gene encoding the telomerase reverse-transcriptase TERT at 5p13.33 is rarely but recurrently targeted by somatic chromosomal translocations to IGH and non-IG loci in B-cell neoplasms, including acute lymphoblastic leukemia, chronic lymphocytic leukemia, mantle cell lymphoma and splenic marginal zone lymphoma. In addition, cases with genomic amplification of TERT locus were identified. Tumors bearing chromosomal aberrations involving TERT showed higher TERT transcriptional expression and increased telomerase activity. These data suggest that deregulation of TERT gene by chromosomal abnormalities leading to increased telomerase activity might contribute to B-cell lymphomagenesis
Frequent and simultaneous epigenetic inactivation of TP53 pathway genes in acute lymphoblastic leukemia
Aberrant DNA methylation is one of the most frequent alterations in patients with Acute Lymphoblastic Leukemia (ALL).
Using methylation bead arrays we analyzed the methylation status of 807 genes implicated in cancer in a group of ALL
samples at diagnosis (n = 48). We found that 154 genes were methylated in more than 10% of ALL samples. Interestingly,
the expression of 13 genes implicated in the TP53 pathway was downregulated by hypermethylation. Direct or indirect
activation of TP53 pathway with 5-aza-29-deoxycitidine, Curcumin or Nutlin-3 induced an increase in apoptosis of ALL cells.
The results obtained with the initial group of 48 patients was validated retrospectively in a second cohort of 200 newly
diagnosed ALL patients. Methylation of at least 1 of the 13 genes implicated in the TP53 pathway was observed in 78% of
the patients, which significantly correlated with a higher relapse (p = 0.001) and mortality (p,0.001) rate being an
independent prognostic factor for disease-free survival (DFS) (p = 0.006) and overall survival (OS) (p = 0.005) in the
multivariate analysis. All these findings indicate that TP53 pathway is altered by epigenetic mechanisms in the majority of
ALL patients and correlates with prognosis. Treatments with compounds that may reverse the epigenetic abnormalities or
activate directly the p53 pathway represent a new therapeutic alternative for patients with ALL
Amplification of IGH/MYC fusion in clinically aggressive IGH/BCL2-positive germinal center B-cell lymphomas
Activation of an oncogene via its juxtaposition to the IGH locus by a chromosomal translocation or, less frequently, by genomic amplification is considered a major mechanism of B-cell lymphomagenesis. However, amplification of an IGH/oncogene fusion, coined a complicon, is a rare event in human cancers and has been associated with poor outcome and resistance to treatment. In this article are descriptions of two cases of germinal-center-derived B-cell lymphomas with IGH/BCL2 fusion that additionally displayed amplification of an IGH/MYC fusion. As shown by fluorescence in situ hybridization, the first case contained a IGH/MYC complicon in double minutes, whereas the second case showed a BCL2/IGH/MYC complicon on a der(8)t(8;14)t(14;18). Additional molecular cytogenetic and mutation analyses revealed that the first case also contained a chromosomal translocation affecting the BCL6 oncogene and a biallelic inactivation of TP53. The second case harbored a duplication of REL and acquired a translocation affecting IGL and a biallelic inactivation of TP53 during progression. Complicons affecting Igh/Myc have been reported previously in lymphomas of mouse models simultaneously deficient in Tp53 and in genes of the nonhomologous end-joining DNA repair pathway. To the best of our knowledge, this is the first time that IGH/MYC complicons have been reported in human lymphomas. Our findings imply that the two mechanisms resulting in MYC deregulation, that is, translocation and amplification, can occur simultaneously
Desarrollo de la técnica de FICTION como nueva herramienta para el diagnóstico precoz de cáncer de pulmón
El cáncer de pulmón es una de las causas de muerte más frecuentes en el mundo occidental. La supervivencia global de los pacientes no supera el 15% a los 5 años, debido principalmente a que la mayor parte de los casos se diagnostican en estadios avanzados. Además de la prevención primaria, mediante la reducción del consumo de tabaco, son necesarias nuevas tecnologías para el diagnóstico precoz de la enfermedad.
Estudios recientes han demostrado que el TAC helicoidal del tórax es efectivo en la detección de nódulos pulmonares malignos en estadios precoces. En la actualidad se está valorando su eficacia en series amplias de pacientes de alto riesgo.
Recientemente se ha desarrollado una nueva técnica de citogenética molecular, el FICTION (Fluorescence Immunophenotyping and Interphase Cytogenetics as a Tool for the Investigation of Neoplasms). Esta técnica permite el análisis simultáneo de marcadores inmunofenotípicos y alteraciones genéticas presentes en las células tumorales. El objetivo de nuestro proyecto es su puesta a punto para el estudio de muestras de esputo y lavado broncoalveolar de pacientes con cáncer de pulmón. El fin último es estudiar la posibilidad de que esta técnica pueda ser utilizada, junto con el TAC helicoidal, en programas de detección precoz de cáncer de pulmón, para pacientes de alto riesgo.
En este trabajo presentamos una revisión de la contribución de las distintas técnicas de citogenética al estudio del cáncer de pulmón y la metodología de trabajo que vamos a llevar a cabo en nuestro proyecto
DNA methylation map of mouse and human brain identifies target genes in Alzheimer’s disease
The central nervous system has a pattern of gene expression that is closely regulated with respect to functional and anatomical regions. DNA methylation is a major regulator of transcriptional activity, and aberrations in the distribution of this epigenetic mark may be involved in many neurological disorders, such as Alzheimer’s disease. Herein, we have analysed 12 distinct mouse brain regions according to their CpG 5’-end gene methylation patterns and observed their unique epigenetic landscapes. The DNA methylomes obtained from the cerebral cortex were used to identify aberrant DNA methylation changes that occurred in two mouse models of Alzheimer’s disease. We were able to translate these findings to patients with Alzheimer’s disease, identifying DNA methylation-associated silencing of three targets genes: thromboxane A2 receptor (TBXA2R), sorbin and SH3 domain containing 3 (SORBS3) and spectrin beta 4 (SPTBN4). These hypermethylation targets indicate that the cyclic AMP response element-binding protein (CREB) activation pathway and the axon initial segment could contribute to the disease
Mantle-cell lymphoma genotypes identified with CGH to BAC microarrays define a leukemic subgroup of disease and predict patient outcome
To identify recurrent genomic changes in mantle cell lymphoma (MCL), we used high-resolution comparative genomic hybridization (CGH) to bacterial artificial chromosome (BAC) microarrays in 68 patients and 9 MCL-derived cell lines. Array CGH defined an MCL genomic signature distinct from other B-cell lymphomas, including deletions of 1p21 and 11q22.3-ATM gene with coincident 10p12-BMI1 gene amplification and 10p14 deletion, along with a previously unidentified loss within 9q21-q22. Specific genomic alterations were associated with different subgroups of disease. Notably, 11 patients with leukemic MCL showed a different genomic profile than nodal cases, including 8p21.3 deletion at tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor gene cluster (55% versus 19%; P = .01) and gain of 8q24.1 at MYC locus (46% versus 14%; P = .015). Additionally, leukemic MCL exhibited frequent IGVH mutation (64% versus 21%; P = .009) with preferential VH4-39 use (36% versus 4%; P = .005) and followed a more indolent clinical course. Blastoid variants, increased number of genomic gains, and deletions of P16/INK4a and TP53 genes correlated with poorer outcomes, while 1p21 loss was associated with prolonged survival (P = .02). In multivariate analysis, deletion of 9q21-q22 was the strongest predictor for inferior survival (hazard ratio [HR], 6; confidence interval [CI], 2.3 to 15.7). Our study highlights the genomic profile as a predictor for clinical outcome and suggests that "genome scanning" of chromosomes 1p21, 9q21-q22, 9p21.3-P16/INK4a, and 17p13.1-TP53 may be clinically useful in MCL
- …
