92,933 research outputs found

    Magnetoplasmons excitations in graphene for filling factors ν6\nu \leq 6

    Full text link
    In the frame of the Hartree-Fock approximation, the dispersion of magnetoplasmons in Graphene is derived for all types of transitions for filling factors ν6\nu\leq 6. The optical conductivity components of the magnetoplasmon curves are calculated. It is shown that the electron-electron interactions lead to a strong re-normalization of the apparent Fermi velocity of Graphene which is different for different types of transitions.Comment: 15 pages, 7 figure

    Dynamical r-process studies within the neutrino-driven wind scenario and its sensitivity to the nuclear physics input

    Full text link
    We use results from long-time core-collapse supernovae simulations to investigate the impact of the late time evolution of the ejecta and of the nuclear physics input on the calculated r-process abundances. Based on the latest hydrodynamical simulations, heavy r-process elements cannot be synthesized in the neutrino-driven winds that follow the supernova explosion. However, by artificially increasing the wind entropy, elements up to A=195 can be made. In this way one can reproduce the typical behavior of high-entropy ejecta where the r-process is expected to occur. We identify which nuclear physics input is more important depending on the dynamical evolution of the ejecta. When the evolution proceeds at high temperatures (hot r-process), an (n,g)-(g,n) equilibrium is reached. While at low temperature (cold r-process) there is a competition between neutron captures and beta decays. In the first phase of the r-process, while enough neutrons are available, the most relevant nuclear physics input are the nuclear masses for the hot r-process and the neutron capture and beta-decay rates for the cold r-process. At the end of this phase, the abundances follow a steady beta flow for the hot r-process and a steady flow of neutron captures and beta decays for the cold r-process. After neutrons are almost exhausted, matter decays to stability and our results show that in both cases neutron captures are key for determining the final abundances, the position of the r-process peaks, and the formation of the rare-earth peak. In all the cases studied, we find that the freeze out occurs in a timescale of several seconds.Comment: 20 pages, 12 figures, submitted to Phys. Rev. C (improved version

    Arrest of flow and emergence of activated processes at the glass transition of a suspension of particles with hard sphere-like interactions

    Get PDF
    By combining aspects of the coherent and self intermediate scattering functions, measured by dynamical light scattering on a suspension of hard sphere-like particles, we show that the arrest of particle number density fluctuations spreads from the position of the main structure factor peak. Taking the velocity auto-correlation function into account we propose that as density fluctuations are arrested the system's ability to respond to diffusing momentum currents is impaired and, accordingly, the viscosity increases. From the stretching of the coherent intermediate scattering function we read a quantitative manifestation of the undissipated thermal energy, the source of those, ergodicity restoring, processes that short-circuit the sharp transition to a perfect glass.Comment: 9 pages, 4 figure

    The evolution of the bi-modal colour distribution of galaxies in SDSS groups

    Full text link
    We analyse uru-r colour distributions for several samples of galaxies in groups drawn from the Fourth Data Release of the Sloan Digital Sky Survey. For all luminosity ranges and environments considered the colour distributions are well described by the sum of two Gaussian functions. We find that the fraction of galaxies in the red sequence is an increasing function of group virial mass. We also study the evolution of the galaxy colour distributions at low redshift, z0.18z\le0.18 in the field and in groups for galaxies brighter than Mr5log(h)=20M_r-5\log(h)=-20, finding significant evidence of recent evolution in the population of galaxies in groups. The fraction of red galaxies monotonically increases with decreasing redshift, this effect implies a much stronger evolution of galaxies in groups than in the field.Comment: 7 pages, 6 figures, submited to MNRAS after minor revisio

    Black holes in extended gravity theories in Palatini formalism

    Full text link
    We consider several physical scenarios where black holes within classical gravity theories including R2R^2 and Ricci-squared corrections and formulated \`a la Palatini can be analytically studied.Comment: 4 pages, contribution to the "Spanish Relativity Meeting in Portugal 2012 (Progress in Mathematical Relativity, Gravitation and Cosmology)", Springer Proceedings in Mathematics (to appear
    corecore