1,351 research outputs found
String splitting and strong coupling meson decay
We study the decay of high spin mesons using the gauge/string theory
correspondence. The rate of the process is calculated by studying the splitting
of a macroscopic string intersecting a D-brane. The result is applied to the
decay of mesons in N=4 SYM with a small number of flavors and in a gravity dual
of large N QCD. In QCD the decay of high spin mesons is found to be heavily
suppressed in the regime of validity of the supergravity description.Comment: 17 pages, 2 figures. V2: References added. V3: Minor correction
Fermions, T-duality and effective actions for D-branes in bosonic backgrounds
We find the effective action for any D-brane in a general bosonic background
of supergravity. The results are explicit in component fields up to second
order in the fermions and are obtained in a covariant manner. No interaction
terms between fermions and the field , characteristic of the bosonic
actions, are considered. These are reserved for future work. In order to obtain
the actions, we reduce directly from the M2-brane world-volume action to the
D2-brane world-volume action. Then, by means of T-duality, we obtain the other
Dp-brane actions. The resulting Dp-brane actions can be written in a single
compact and elegant expression.Comment: 22 pages, latex, version published by JHEP plus typos corrected in
eq.(44) and eq.(47
Supersymmetric D-branes and calibrations on general N=1 backgrounds
We study the conditions to have supersymmetric D-branes on general {\cal N}=1
backgrounds with Ramond-Ramond fluxes. These conditions can be written in terms
of the two pure spinors associated to the SU(3)\times SU(3) structure on
T_M\oplus T^\star_M, and can be split into two parts each involving a different
pure spinor. The first involves the integrable pure spinor and requires the
D-brane to wrap a generalised complex submanifold with respect to the
generalised complex structure associated to it. The second contains the
non-integrable pure spinor and is related to the stability of the brane. The
two conditions can be rephrased as a generalised calibration condition for the
brane. The results preserve the generalised mirror symmetry relating the type
IIA and IIB backgrounds considered, giving further evidence for this duality.Comment: 23 pages. Some improvements and clarifications, typos corrected and
references added. v3: Version published in JHE
Wilson Loop, Regge Trajectory and Hadron Masses in a Yang-Mills Theory from Semiclassical Strings
We compute the one-loop string corrections to the Wilson loop, glueball Regge
trajectory and stringy hadron masses in the Witten model of non supersymmetric,
large-N Yang-Mills theory. The classical string configurations corresponding to
the above field theory objects are respectively: open straight strings, folded
closed spinning strings, and strings orbiting in the internal part of the
supergravity background. For the rectangular Wilson loop we show that besides
the standard Luescher term, string corrections provide a rescaling of the field
theory string tension. The one-loop corrections to the linear glueball Regge
trajectories render them nonlinear with a positive intercept, as in the
experimental soft Pomeron trajectory. Strings orbiting in the internal space
predict a spectrum of hadronic-like states charged under global flavor
symmetries which falls in the same universality class of other confining
models.Comment: 52 pages, latex 3 times, v3: references adde
D-branes on AdS flux compactifications
We study D-branes in N=1 flux compactifications to AdS_4. We derive their
supersymmetry conditions and express them in terms of background generalized
calibrations. Basically because AdS has a boundary, the analysis of stability
is more subtle and qualitatively different from the usual case of Minkowski
compactifications. For instance, stable D-branes filling AdS_4 may wrap trivial
internal cycles. Our analysis gives a geometric realization of the
four-dimensional field theory approach of Freedman and collaborators.
Furthermore, the one-to-one correspondence between the supersymmetry conditions
of the background and the existence of generalized calibrations for D-branes is
clarified and extended to any supersymmetric flux background that admits a
time-like Killing vector and for which all fields are time-independent with
respect to the associated time. As explicit examples, we discuss supersymmetric
D-branes on IIA nearly Kaehler AdS_4 flux compactifications.Comment: 43 pages, 2 pictures, 1 table; v2: added references, color to figure
and corrected typo in (6.21b
Automatic Segmentation of Posterior Pole Retinal Layers In Patients with Early Stage Glaucoma Using Spectral Domain Optical Coherence Tomography
Purpose: To measure Ganglion Cell Layer (GCL) and Retinal Nerve Fiber Layer (RNFL) thickness of the retinal posterior pole in patients with early stage primary open-angle glaucoma (POAG) using the new automatic segmentation technology of spectral domain optical coherence tomograph (SD-OCT).
Methods: 37 clinical records of patients with early glaucoma (grade 1 to 2 according to the Glaucoma Staging System 2) and 40 age and sex-matched controls were considered in this case-control observational retrospective study. Automated segmentation of GCL and RNFL was performed in one randomly selected eye from the electronic OCT records of each participant using the new Spectralis SD-OCT segmentation technology (Heidelberg Engineering, Inc., Heidelberg, Germany). Thickness of different retinal layers was obtained from each Posterior Pole volumetric scan. Measurements of the peripapillary RNFL thickness (pRNFLt) were also obtained and then compared with those of posterior pole RNFL thickness (ppRNFLt).
Results: Both GCL and RNFL were significantly thinner at the retinal posterior pole in the POAG group as compared to the control group (p<0,0001). Furthermore, pRNFLt was significantly thinner in the glaucoma group as opposed to the control group (p<0,0001). Measurements of pRNFLt were significantly correlated with those of the ppRNFLt (Pearson’s coefficient r=0.863).
Conclusions: The new Spectralis SD-OCT automatic segmentation tool may be useful in evaluating structural damage in patients with early glaucoma, by providing complementary measurements to the clinical assessment of glaucoma that could be used in conjunction with other relevant parameters in the diagnosis and the evaluation of the progression of the disease
Deformations of calibrated D-branes in flux generalized complex manifolds
We study massless deformations of generalized calibrated cycles, which
describe, in the language of generalized complex geometry, supersymmetric
D-branes in N=1 supersymmetric compactifications with fluxes. We find that the
deformations are classified by the first cohomology group of a Lie algebroid
canonically associated to the generalized calibrated cycle, seen as a
generalized complex submanifold with respect to the integrable generalized
complex structure of the bulk. We provide examples in the SU(3) structure case
and in a `genuine' generalized complex structure case. We discuss cases of
lifting of massless modes due to world-volume fluxes, background fluxes and a
generalized complex structure that changes type.Comment: 52 pages, added references, added comment on ellipticity in appendix
B, made minor changes according to instructions referee JHE
From ten to four and back again: how to generalize the geometry
We discuss the four-dimensional N=1 effective approach in the study of warped
type II flux compactifications with SU(3)x SU(3)-structure to AdS_4 or flat
Minkowski space-time. The non-trivial warping makes it natural to use a
supergravity formulation invariant under local complexified Weyl
transformations. We obtain the classical superpotential from a standard
argument involving domain walls and generalized calibrations and show how the
resulting F-flatness and D-flatness equations exactly reproduce the full
ten-dimensional supersymmetry equations. Furthermore, we consider the effect of
non-perturbative corrections to this superpotential arising from gaugino
condensation or Euclidean D-brane instantons. For the latter we derive the
supersymmetry conditions in N=1 flux vacua in full generality. We find that the
non-perturbative corrections induce a quantum deformation of the internal
generalized geometry. Smeared instantons allow to understand KKLT-like AdS
vacua from a ten-dimensional point of view. On the other hand, non-smeared
instantons in IIB warped Calabi-Yau compactifications 'destabilize' the
Calabi-Yau complex structure into a genuine generalized complex one. This
deformation gives a geometrical explanation of the non-trivial superpotential
for mobile D3-branes induced by the non-perturbative corrections.Comment: LaTeX, 47 pages, v2, references, hyperref added, v3, correcting small
inaccuracies in eqs. (2.6a) and (5.16
Noncommutative Electrodynamics
In this paper we define a causal Lorentz covariant noncommutative (NC)
classical Electrodynamics. We obtain an explicit realization of the NC theory
by solving perturbatively the Seiberg-Witten map. The action is polynomial in
the field strenght , allowing to preserve both causality and Lorentz
covariance. The general structure of the Lagrangian is studied, to all orders
in the perturbative expansion in the NC parameter . We show that
monochromatic plane waves are solutions of the equations of motion to all
orders. An iterative method has been developed to solve the equations of motion
and has been applied to the study of the corrections to the superposition law
and to the Coulomb law.Comment: 13 pages, 2 figures, one reference adde
Perturbing gauge/gravity duals by a Romans mass
We show how to produce algorithmically gravity solutions in massive IIA (as
infinitesimal first order perturbations in the Romans mass parameter) dual to
assigned conformal field theories. We illustrate the procedure on a family of
Chern--Simons--matter conformal field theories that we recently obtained from
the N=6 theory by waiving the condition that the levels sum up to zero.Comment: 30 page
- …
