994 research outputs found

    Collective sideward flow of nuclear matter in violent high-energy heavy-ion collisions

    Get PDF
    Angular and energy distributions of fragments emitted from fast nucleus-nucleus collisions (Ne--> U at 250, 400, and 800 MeV/N) are calculated with use of nuclear fluid dynamics. A characteristic dependence of the energy spectra and angular distributions on the impact parameter is predicted. The preferential sideward emission of reaction fragments observed in the calculation for nearly central collisions seems to be supported by recent experimental data

    Theory of fission-mass distributions demonstrated for 226Ra, 236U, 258Fm

    Get PDF
    With the mass asymmetry described by the dynamical collective fragmentation coordinate ξ, and with use of the asymmetric two-center shell model, the fission mass distributions for 226Ra, 236U, and 258Fm (which are typical representatives for triple-, double-, and single-humped distributions) are explained

    Influence of shape fluctuations in relativistic heavy ion collisions

    Get PDF
    The influence of fluctuations of the shape degree of freedom in collisions of deformed nuclei with energies between 0.8 and 2.1 GeV/nucleon is analyzed on the basis of an intranuclear cascade simulation for the strongly deformed systems 46Ti+ 46Ti and 166Er+ 166Er. While there is a considerable sensitivity of the global event variables to the orientation for polarized beams and targets, this dependence disappears in the average over all orientations for impact parameter selected and integrated events. The dependence of the nuclear stopping and thermalization on the size of the system under consideration and on the bombarding energy is also investigated

    Collective effects on mass asymmetry in fission

    Get PDF
    the development of the mass asymmetry vibrations in the final stages of the fission process is studied with an approximate treatment of the coupling to relative motion. A parametrized friction is introduced and its effects are studied. Numerical results are presented for 236U, together with estimates for the kinetic energy of the fragments. RADIOACTIVITY, FISSION 236U; calculated mass distribution, kinetic energy distribution. Collective dynamics, shell correction method, cranking model

    Different deformations of proton and neutron distributions in nuclei

    Get PDF
    Different collective deformation coordinates for neutrons and protons are introduced to allow for both stretching and γ transitions consistent with experiments. The rotational actinide nuclei 234-238U and 232Th are successfully analyzed in this model. NUCLEAR STRUCTURE 232Th, 234-238U calculated B (E2) values, collective model

    Pure Collective Precession Motion of High-Spin Torus Isomer

    Full text link
    We investigate the precession motion of the exotic torus configuration in high-spin excited states of 40^{40}Ca. For this aim, we use the three-dimensional time-dependent Hartree-Fock (TDHF) method. Although the high-spin torus isomer is a unique quantum object characterized by the alignment of angular momenta of independent single-particle motions, we find that the obtained moment of inertia for rotations about an axis perpendicular to the symmetry axis is close to the rigid-body value. We also analyze the microscopic structure of the precession motion using the random-phase approximation (RPA) method for high-spin states. In the RPA calculation, the precession motion of the torus isomer is generated by coherent superposition of many one-particle-one-hole excitations across the sloping Fermi surface that strongly violates the time-reversal symmetry. By comparing results of the TDHF and the RPA calculations, we find that the precession motion obtained by the TDHF calculation is a pure collective motion well decoupled from other collective modes

    Consequences of the center-of-mass correction in nuclear mean-field models

    Get PDF
    We study the influence of the scheme for the correction for spurious center-of-mass motion on the fit of effective interactions for self-consistent nuclear mean-field calculations. We find that interactions with very simple center-of-mass correction have significantly larger surface coefficients than interactions for which the center-of-mass correction was calculated for the actual many-body state during the fit. The reason for that is that the effective interaction has to counteract the wrong trends with nucleon number of all simplified schemes for center-of-mass correction which puts a wrong trend with mass number into the effective interaction itself. The effect becomes clearly visible when looking at the deformation energy of largely deformed systems, e.g. superdeformed states or fission barriers of heavy nuclei.Comment: 12 pages LATeX, needs EPJ style files, 5 eps figures, accepted for publication in Eur. Phys. J.
    corecore