303 research outputs found
Inference via low-dimensional couplings
We investigate the low-dimensional structure of deterministic transformations
between random variables, i.e., transport maps between probability measures. In
the context of statistics and machine learning, these transformations can be
used to couple a tractable "reference" measure (e.g., a standard Gaussian) with
a target measure of interest. Direct simulation from the desired measure can
then be achieved by pushing forward reference samples through the map. Yet
characterizing such a map---e.g., representing and evaluating it---grows
challenging in high dimensions. The central contribution of this paper is to
establish a link between the Markov properties of the target measure and the
existence of low-dimensional couplings, induced by transport maps that are
sparse and/or decomposable. Our analysis not only facilitates the construction
of transformations in high-dimensional settings, but also suggests new
inference methodologies for continuous non-Gaussian graphical models. For
instance, in the context of nonlinear state-space models, we describe new
variational algorithms for filtering, smoothing, and sequential parameter
inference. These algorithms can be understood as the natural
generalization---to the non-Gaussian case---of the square-root
Rauch-Tung-Striebel Gaussian smoother.Comment: 78 pages, 25 figure
Exploiting network topology for large-scale inference of nonlinear reaction models
The development of chemical reaction models aids understanding and prediction
in areas ranging from biology to electrochemistry and combustion. A systematic
approach to building reaction network models uses observational data not only
to estimate unknown parameters, but also to learn model structure. Bayesian
inference provides a natural approach to this data-driven construction of
models. Yet traditional Bayesian model inference methodologies that numerically
evaluate the evidence for each model are often infeasible for nonlinear
reaction network inference, as the number of plausible models can be
combinatorially large. Alternative approaches based on model-space sampling can
enable large-scale network inference, but their realization presents many
challenges. In this paper, we present new computational methods that make
large-scale nonlinear network inference tractable. First, we exploit the
topology of networks describing potential interactions among chemical species
to design improved "between-model" proposals for reversible-jump Markov chain
Monte Carlo. Second, we introduce a sensitivity-based determination of move
types which, when combined with network-aware proposals, yields significant
additional gains in sampling performance. These algorithms are demonstrated on
inference problems drawn from systems biology, with nonlinear differential
equation models of species interactions
Fiscal policy and the Ricardian equivalence: Empirical evidence from Morocco
Abstract. This paper empirically investigates the validity of the Ricardian equivalence hypothesis in Morocco, based on recent data (1980-2016) that encompasses interesting episodes of demand-oriented expansionary government policy during the second half of the 2000s, followed by significant restrictive fiscal measures starting from 2012. We use the SVAR methodology, which enables us to make the difference between the dynamics of savings and the budget deficit by separating them into two types of shocks. Our results suggest that the equivalence is verified in the Moroccan macroeconomic framework. The paper concludes that national savings offset up to 76% of fiscal deficit shocks.Keywords. Fiscal deficit, National savings, Ricardian equivalence, SVAR model.JEL. H31, E21, E62
Efficient Localization of Discontinuities in Complex Computational Simulations
Surrogate models for computational simulations are input-output
approximations that allow computationally intensive analyses, such as
uncertainty propagation and inference, to be performed efficiently. When a
simulation output does not depend smoothly on its inputs, the error and
convergence rate of many approximation methods deteriorate substantially. This
paper details a method for efficiently localizing discontinuities in the input
parameter domain, so that the model output can be approximated as a piecewise
smooth function. The approach comprises an initialization phase, which uses
polynomial annihilation to assign function values to different regions and thus
seed an automated labeling procedure, followed by a refinement phase that
adaptively updates a kernel support vector machine representation of the
separating surface via active learning. The overall approach avoids structured
grids and exploits any available simplicity in the geometry of the separating
surface, thus reducing the number of model evaluations required to localize the
discontinuity. The method is illustrated on examples of up to eleven
dimensions, including algebraic models and ODE/PDE systems, and demonstrates
improved scaling and efficiency over other discontinuity localization
approaches
Spectral tensor-train decomposition
The accurate approximation of high-dimensional functions is an essential task
in uncertainty quantification and many other fields. We propose a new function
approximation scheme based on a spectral extension of the tensor-train (TT)
decomposition. We first define a functional version of the TT decomposition and
analyze its properties. We obtain results on the convergence of the
decomposition, revealing links between the regularity of the function, the
dimension of the input space, and the TT ranks. We also show that the
regularity of the target function is preserved by the univariate functions
(i.e., the "cores") comprising the functional TT decomposition. This result
motivates an approximation scheme employing polynomial approximations of the
cores. For functions with appropriate regularity, the resulting
\textit{spectral tensor-train decomposition} combines the favorable
dimension-scaling of the TT decomposition with the spectral convergence rate of
polynomial approximations, yielding efficient and accurate surrogates for
high-dimensional functions. To construct these decompositions, we use the
sampling algorithm \texttt{TT-DMRG-cross} to obtain the TT decomposition of
tensors resulting from suitable discretizations of the target function. We
assess the performance of the method on a range of numerical examples: a
modifed set of Genz functions with dimension up to , and functions with
mixed Fourier modes or with local features. We observe significant improvements
in performance over an anisotropic adaptive Smolyak approach. The method is
also used to approximate the solution of an elliptic PDE with random input
data. The open source software and examples presented in this work are
available online.Comment: 33 pages, 19 figure
- …
