1,128 research outputs found

    Spin-wave-induced lateral temperature gradient in a YIG thin film/GGG system excited in an ESR cavity

    Full text link
    Lateral thermal gradient of an yttrium iron garnet (YIG) film under the microwave application in the cavity of the electron spin resonance system (ESR) was measured at room temperature by fabricating a Cu/Sb thermocouple onto it. To date, thermal transport in YIG films caused by the Damon-Eshbach mode (DEM) - the unidirectional spin-wave heat conveyer effect - was demonstrated only by the excitation using coplanar waveguides. Here we show that effect exists even under YIG excitation using the ESR cavity - tool often employed to realize spin pumping. The temperature difference observed around the ferromagnetic resonance (FMR) field under the 4 mW microwave power peaked at 13 mK. The observed thermoelectric signal indicates the imbalance of the population between the DEMs that propagate near the top and bottom surfaces of the YIG film. We attribute the DEM population imbalance to the different magnetic damping near the top and bottom YIG surfaces. Additionally, the spin wave dynamics of the system were investigated using the micromagnetic simulations. The micromagnetic simulations confirmed the existence of the DEM imbalance in the system with the increased Gilbert damping at one of the YIG interfaces. The reported results are indispensable for the quantitative estimation of the electromotive force in the spin-charge conversion experiments using ESR cavities.Comment: 18 pages, 6 figure

    Spin Drift in Highly Doped n-type Si

    Get PDF
    A quantitative estimation of spin drift velocity in highly doped n-type silicon (Si) at 8 K is presented in this letter. A local two-terminal Hanle measurement enables the detection of a modulation of spin signals from the Si as a function of an external electric field, and this modulation is analyzed by using a spin drift-diffusion equation and an analytical solution of the Hanle-type spin precession. The analyses reveal that the spin drift velocity is linearly proportional to the electric field. The contribution of the spin drift effect to the spin signals is crosschecked by introducing a modified nonlocal four-terminal method.Comment: 16 pages, 3 figure
    corecore