14 research outputs found
Maternal pre-pregnancy risk drinking and toddler behavior problems: the Norwegian Mother and Child Cohort Study
Community health workers for non-communicable diseases prevention and control in developing countries: Evidence and implications
Energy drinks and their adverse health effects: A systematic review of the current evidence
PURPOSE: With the rising consumption of so-called energy drinks over the last few years, there has been a growing body of literature describing significant adverse health events after the ingestion of these beverages. To gain further insight about the clinical spectrum of these adverse events, we conducted a literature review.
METHODS: Using PubMed and Google-Scholar, we searched the literature from January 1980 through May 2014 for articles on the adverse health effects of energy drinks. A total of 2097 publications were found. We then excluded molecular and industry-related studies, popular media reports, and case reports of isolated caffeine toxicity, yielding 43 reports.
CONCLUSION: Energy drink consumption is a health issue primarily of the adolescent and young adult male population. It is linked to increased substance abuse and risk-taking behaviors. The most common adverse events affect the cardiovascular and neurological systems. The most common ingredient in energy drinks is caffeine, and it is believed that the adverse events are related to its effects, as well as potentiating effects of other stimulants in these drinks. Education, regulation, and further studies are required
CYP3A5 Mediates Effects of Cocaine on Human Neocorticogenesis: Studies using an In Vitro 3D Self-Organized hPSC Model with a Single Cortex-Like Unit
Because of unavoidable confounding variables in the direct study of human subjects, it has been difficult to unravel the effects of prenatal cocaine exposure on the human fetal brain, as well as the cellular and biochemical mechanisms involved. Here, we propose a novel approach using a human pluripotent stem cell (hPSC)-based 3D neocortical organoid model. This model retains essential features of human neocortical development by encompassing a single self-organized neocortical structure, without including an animal-derived gelatinous matrix. We reported previously that prenatal cocaine exposure to rats during the most active period of neural progenitor proliferation induces cytoarchitectural changes in the embryonic neocortex. We also identified a role of CYP450 and consequent oxidative ER stress signaling in these effects. However, because of differences between humans and rodents in neocorticogenesis and brain CYP metabolism, translation of the research findings from the rodent model to human brain development is uncertain. Using hPSC 3D neocortical organoids, we demonstrate that the effects of cocaine are mediated through CYP3A5-induced generation of reactive oxygen species, inhibition of neocortical progenitor cell proliferation, induction of premature neuronal differentiation, and interruption of neural tissue development. Furthermore, knockdown of CYP3A5 reversed these cocaine-induced pathological phenotypes, suggesting CYP3A5 as a therapeutic target to mitigate the deleterious neurodevelopmental effects of prenatal cocaine exposure in humans. Moreover, 3D organoid methodology provides an innovative platform for identifying adverse effects of abused psychostimulants and pharmaceutical agents, and can be adapted for use in neurodevelopmental disorders with genetic etiologies
