1,798 research outputs found
Ultraviolet Complete Quantum Gravity
An ultraviolet complete quantum gravity theory is formulated in which vertex
functions in Feynman graphs are entire functions and the propagating graviton
is described by a local, causal propagator. The cosmological constant problem
is investigated in the context of the ultraviolet complete quantum gravity.Comment: 11 pages, no figures. Changes to text. Results remain the same.
References added. To be published in European Physics Journal Plu
Growth, profits and technological choice: The case of the Lancashire cotton textile industry
Using Lancashire textile industry company case studies and financial records, mainly from the period just before the First World War, the processes of growth and decline are re-examined. These are considered by reference to the nature of Lancashire entrepreneurship and the impact on technological choice. Capital accumulation, associated wealth distributions and the character of Lancashire business organisation were sybiotically linked to the success of the industry before 1914. However, the legacy of that accumulation in later decades, chronic overcapacity, formed a barrier to reconstruction and enhanced the preciptious decline of a once great industry
Integrate and Fire Neural Networks, Piecewise Contractive Maps and Limit Cycles
We study the global dynamics of integrate and fire neural networks composed
of an arbitrary number of identical neurons interacting by inhibition and
excitation. We prove that if the interactions are strong enough, then the
support of the stable asymptotic dynamics consists of limit cycles. We also
find sufficient conditions for the synchronization of networks containing
excitatory neurons. The proofs are based on the analysis of the equivalent
dynamics of a piecewise continuous Poincar\'e map associated to the system. We
show that for strong interactions the Poincar\'e map is piecewise contractive.
Using this contraction property, we prove that there exist a countable number
of limit cycles attracting all the orbits dropping into the stable subset of
the phase space. This result applies not only to the Poincar\'e map under
study, but also to a wide class of general n-dimensional piecewise contractive
maps.Comment: 46 pages. In this version we added many comments suggested by the
referees all along the paper, we changed the introduction and the section
containing the conclusions. The final version will appear in Journal of
Mathematical Biology of SPRINGER and will be available at
http://www.springerlink.com/content/0303-681
Recommended from our members
Ensemble prediction for nowcasting with a convection-permitting model—I: description of the system and the impact of radar-derived surface precipitation rates
A key strategy to improve the skill of quantitative predictions of precipitation, as well as hazardous weather such as severe thunderstorms and flash floods is to exploit the use of observations of convective activity (e.g. from radar). In this paper, a convection-permitting ensemble prediction system (EPS) aimed at addressing the problems of forecasting localized weather events with relatively short predictability time scale and based on a 1.5 km grid-length version of the Met Office Unified Model is presented. Particular attention is given to the impact of using predicted observations of radar-derived precipitation intensity in the ensemble transform Kalman filter (ETKF) used within the EPS. Our initial results based on the use of a 24-member ensemble of forecasts for two summer case studies show that the convective-scale EPS produces fairly reliable forecasts of temperature, horizontal winds and relative humidity at 1 h lead time, as evident from the inspection of rank histograms. On the other hand, the rank histograms seem also to show that the EPS generates too much spread for forecasts of (i) surface pressure and (ii) surface precipitation intensity. These may indicate that for (i) the value of surface pressure observation error standard deviation used to generate surface pressure rank histograms is too large and for (ii) may be the result of non-Gaussian precipitation observation errors. However, further investigations are needed to better understand these findings. Finally, the inclusion of predicted observations of precipitation from radar in the 24-member EPS considered in this paper does not seem to improve the 1-h lead time forecast skill
Ex post aggregate real rates of return in Canada: 1947-1976
Cover title"June 1981."Series statement handwritten on cover"This is a draft of a study to be published by the Economic Council of Canada. It is made available to participants in the Rates of Return Conference on the strict understanding that it is not to be circulated or quoted without permission from the Economic Council of Canada."Includes bibliographical references (p. 77-80
Serine 25 phosphorylation inhibits RIPK1 kinase-dependent cell death in models of infection and inflammation
RIPK1 regulates cell death and inflammation through kinase-dependent and -independent mechanisms. As a scaffold, RIPK1 inhibits caspase-8-dependent apoptosis and RIPK3/MLKL-dependent necroptosis. As a kinase, RIPK1 paradoxically induces these cell death modalities. The molecular switch between RIPK1 pro-survival and pro-death functions remains poorly understood. We identify phosphorylation of RIPK1 on Ser25 by IKKs as a key mechanism directly inhibiting RIPK1 kinase activity and preventing TNF-mediated RIPK1-dependent cell death. Mimicking Ser25 phosphorylation (S > D mutation) protects cells and mice from the cytotoxic effect of TNF in conditions of IKK inhibition. In line with their roles in IKK activation, TNF-induced Ser25 phosphorylation of RIPK1 is defective in TAK1- or SHARPIN-deficient cells and restoring phosphorylation protects these cells from TNF-induced death. Importantly, mimicking Ser25 phosphorylation compromises the in vivo cell death-dependent immune control of Yersinia infection, a physiological model of TAK1/IKK inhibition, and rescues the cell death-induced multi-organ inflammatory phenotype of the SHARPIN-deficient mice
HER2 testing in breast cancer: Opportunities and challenges
Human epidermal growth factor receptor 2 (HER2) is overexpressed in 15-25% of breast cancers, usually as a result of HER2 gene amplification. Positive HER2 status is considered to be an adverse prognostic factor. Recognition of the role of HER2 in breast cancer growth has led to the development of anti-HER2 directed therapy, with the humanized monoclonal antibody trastuzumab (Herceptin (R)) having been approved for the therapy of HER2-positive metastatic breast cancer. Clinical studies have further suggested that HER2 status can provide important information regarding success or failure of certain hormonal therapies or chemotherapies. As a result of these developments, there has been increasing demand to perform HER2 testing on current and archived breast cancer specimens. This article reviews the molecular background of HER2 function, activation and inhibition as well as current opinions concerning its role in chemosensitivity and interaction with estrogen receptor biology. The different tissue-based assays used to detect HER2 amplification and overexpression are discussed with respect to their advantages and disadvantages, when to test (at initial diagnosis or pre-treatment), where to test (locally or centralized) and the need for quality assurance to ensure accurate and valid testing results
Associative memory storing an extensive number of patterns based on a network of oscillators with distributed natural frequencies in the presence of external white noise
We study associative memory based on temporal coding in which successful
retrieval is realized as an entrainment in a network of simple phase
oscillators with distributed natural frequencies under the influence of white
noise. The memory patterns are assumed to be given by uniformly distributed
random numbers on so that the patterns encode the phase differences
of the oscillators. To derive the macroscopic order parameter equations for the
network with an extensive number of stored patterns, we introduce the effective
transfer function by assuming the fixed-point equation of the form of the TAP
equation, which describes the time-averaged output as a function of the
effective time-averaged local field. Properties of the networks associated with
synchronization phenomena for a discrete symmetric natural frequency
distribution with three frequency components are studied based on the order
parameter equations, and are shown to be in good agreement with the results of
numerical simulations. Two types of retrieval states are found to occur with
respect to the degree of synchronization, when the size of the width of the
natural frequency distribution is changed.Comment: published in Phys. Rev.
Theta-13 as a Probe of Mu-Tau symmetry for Leptons
Many experiments are being planned to measure the neutrino mixing parameter
using reactor as well as accelerator neutrino beams. In this
note, the theoretical significance of a high precision measurement of this
parameter is discussed. It is emphasized that it will provide crucial
information about different ways to understand the origin of large atmospheric
neutrino mixing and move us closer towards determining the neutrino mass
matrix. For instance if exact symmetry in the
neutrino mass matrix is assumed to be the reason for maximal
mixing, one gets . Whether or can provide information about the way the
symmetry breaking manifests in the case of normal hierarchy. We also discuss
the same question for inverted hierarchy as well as possible gauge theories
with this symmetry.Comment: 12 pages; no figures; latex; more exact expressions given for some
parameters and minor typos corrected; paper accepted for publication in JHE
- …
