485 research outputs found
Push & Pull: autonomous deployment of mobile sensors for a complete coverage
Mobile sensor networks are important for several strategic applications
devoted to monitoring critical areas. In such hostile scenarios, sensors cannot
be deployed manually and are either sent from a safe location or dropped from
an aircraft. Mobile devices permit a dynamic deployment reconfiguration that
improves the coverage in terms of completeness and uniformity.
In this paper we propose a distributed algorithm for the autonomous
deployment of mobile sensors called Push&Pull. According to our proposal,
movement decisions are made by each sensor on the basis of locally available
information and do not require any prior knowledge of the operating conditions
or any manual tuning of key parameters.
We formally prove that, when a sufficient number of sensors are available,
our approach guarantees a complete and uniform coverage. Furthermore, we
demonstrate that the algorithm execution always terminates preventing movement
oscillations.
Numerous simulations show that our algorithm reaches a complete coverage
within reasonable time with moderate energy consumption, even when the target
area has irregular shapes. Performance comparisons between Push&Pull and one of
the most acknowledged algorithms show how the former one can efficiently reach
a more uniform and complete coverage under a wide range of working scenarios.Comment: Technical Report. This paper has been published on Wireless Networks,
Springer. Animations and the complete code of the proposed algorithm are
available for download at the address:
http://www.dsi.uniroma1.it/~novella/mobile_sensors
Quantum Characterization of a Werner-like Mixture
We introduce a Werner-like mixture [R. F. Werner, Phys. Rev. A {\bf 40}, 4277
(1989)] by considering two correlated but different degrees of freedom, one
with discrete variables and the other with continuous variables. We evaluate
the mixedness of this state, and its degree of entanglement establishing its
usefulness for quantum information processing like quantum teleportation. Then,
we provide its tomographic characterization. Finally, we show how such a
mixture can be generated and measured in a trapped system like one electron in
a Penning trap.Comment: 8 pages ReVTeX, 8 eps figure
Contractive Schroedinger cat states for a free mass
Contractive states for a free quantum particle were introduced by Yuen [Yuen
H P 1983 Phys. Rev. Lett. 51, 719] in an attempt to evade the standard quantum
limit for repeated position measurements. We show how appropriate families of
two- and three component ``Schroedinger cat states'' are able to support
non-trivial correlations between the position and momentum observables leading
to contractive behavior. The existence of contractive Schroedinger cat states
is suggestive of potential novel roles of non-classical states for precision
measurement schemes.Comment: 24 pages, 7 encapsulated eps color figures, REVTeX4 style. Published
online in New Journal of Physics 5 (2003) 5.1-5.21. Higher-resolution figures
available in published version. (accessible at http://www.njp.org/
Synthesis and characterization of entangled mesoscopic superpositions for a trapped electron
We propose a scheme for the generation and reconstruction of entangled states
between the internal and external (motional) degrees of freedom of a trapped
electron. Such states also exhibit quantum coherence at a mesoscopic level.Comment: 4 pages, 1 figure, RevTeX (twocolumn
The Pauli Equation for Probability Distributions
The "marginal" distributions for measurable coordinate and spin projection is
introduced. Then, the analog of the Pauli equation for spin-1/2 particle is
obtained for such probability distributions instead of the usual wave
functions. That allows a classical-like approach to quantum mechanics. Some
illuminating examples are presented.Comment: 14 pages, ReVTe
Wigner formalism for a particle on an infinite lattice: dynamics and spin
The recently proposed Wigner function for a particle in an infinite lattice (Hinarejos M, Banuls MC and Perez A 2012 New J. Phys. 14 103009) is extended here to include an internal degree of freedom as spin. This extension is made by introducing a Wigner matrix. The formalism is developed to account for dynamical processes, with or without decoherence. We show explicit solutions for the case of Hamiltonian evolution under a position-dependent potential, and for evolution governed by a master equation under some simple models of decoherence, for which the Wigner matrix formalism is well suited. Discrete processes are also discussed. Finally, we discuss the possibility of introducing a negativity concept for the Wigner function in the case where the spin degree of freedom is included
P&P protocol: local coordination of mobile sensors for self-deployment
The use of mobile sensors is of great relevance for a number of strategic
applications devoted to monitoring critical areas where sensors can not be
deployed manually. In these networks, each sensor adapts its position on the
basis of a local evaluation of the coverage efficiency, thus permitting an
autonomous deployment.
Several algorithms have been proposed to deploy mobile sensors over the area
of interest. The applicability of these approaches largely depends on a proper
formalization of rigorous rules to coordinate sensor movements, solve local
conflicts and manage possible failures of communications and devices.
In this paper we introduce P&P, a communication protocol that permits a
correct and efficient coordination of sensor movements in agreement with the
PUSH&PULL algorithm. We deeply investigate and solve the problems that may
occur when coordinating asynchronous local decisions in the presence of an
unreliable transmission medium and possibly faulty devices such as in the
typical working scenario of mobile sensor networks.
Simulation results show the performance of our protocol under a range of
operative settings, including conflict situations, irregularly shaped target
areas, and node failures.Comment: Technical repor
Neural network topology for wind turbine analysis
In this work Artificial Neural Networks (ANN) are used for a multi-target optimization of the aerodynamics of a wind turbine blade. The Artificial Neural Network is used to build a meta-model of the blade, which is then optimized according to the imposed criteria. The neural networks are trained with a data set built by a series of CFD simulations and their configuration (number of neurons and layers) selected to improve performances and avoid over-fitting. The basic configuration of the airfoil is the profile S809, which is commonly used in horizontal axis wind turbines (HAWT), equipped with a Coanda jet. The design position and momentum of the jet are optimized to maximize aerodynamic efficiency and minimize the power required to activate the Coanda Jet
In silico clinical trials through AI and statistical model checking
A Virtual Patient (VP) is a computational model accounting for individualised (patho-) physiology and Pharmaco-Kinetics/Dynamics of relevant drugs. Availability of VPs is among the enabling technology for In Silico Clinical Trials. Here we shortly outline the state of the art as for VP generation and summarise our recent work on Artificial Intelligence (AI) and Statistical Model Checking based generation of VPs
- …
