468 research outputs found
Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE
The single-phase liquid argon time projection chamber (LArTPC) provides a
large amount of detailed information in the form of fine-grained drifted
ionization charge from particle traces. To fully utilize this information, the
deposited charge must be accurately extracted from the raw digitized waveforms
via a robust signal processing chain. Enabled by the ultra-low noise levels
associated with cryogenic electronics in the MicroBooNE detector, the precise
extraction of ionization charge from the induction wire planes in a
single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event
display images, and quantitatively demonstrated via waveform-level and
track-level metrics. Improved performance of induction plane calorimetry is
demonstrated through the agreement of extracted ionization charge measurements
across different wire planes for various event topologies. In addition to the
comprehensive waveform-level comparison of data and simulation, a calibration
of the cryogenic electronics response is presented and solutions to various
MicroBooNE-specific TPC issues are discussed. This work presents an important
improvement in LArTPC signal processing, the foundation of reconstruction and
therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at
arXiv:1802.0870
Recommended from our members
Cosmogenic neutron production at the Sudbury Neutrino Observatory
Neutrons produced in nuclear interactions initiated by cosmic-ray muons present an irreducible background to many rare-event searches, even in detectors located deep underground. Models for the production of these neutrons have been tested against previous experimental data, but the extrapolation to deeper sites is not well understood. Here we report results from an analysis of cosmogenically produced neutrons at the Sudbury Neutrino Observatory. A specific set of observables are presented, which can be used to benchmark the validity of geant4 physics models. In addition, the cosmogenic neutron yield, in units of 10-4 cm2/(g·μ), is measured to be 7.28±0.09(stat)-1.12+1.59(syst) in pure heavy water and 7.30±0.07(stat)-1.02+1.40(syst) in NaCl-loaded heavy water. These results provide unique insights into this potential background source for experiments at SNOLAB
Design and construction of the MicroBooNE Cosmic Ray Tagger system
The MicroBooNE detector utilizes a liquid argon time projection chamber
(LArTPC) with an 85 t active mass to study neutrino interactions along the
Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground
level, the detector records many cosmic muon tracks in each beam-related
detector trigger that can be misidentified as signals of interest. To reduce
these cosmogenic backgrounds, we have designed and constructed a TPC-external
Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for
High Energy Physics (LHEP), Albert Einstein center for fundamental physics,
University of Bern. The system utilizes plastic scintillation modules to
provide precise time and position information for TPC-traversing particles.
Successful matching of TPC tracks and CRT data will allow us to reduce
cosmogenic background and better characterize the light collection system and
LArTPC data using cosmic muons. In this paper we describe the design and
installation of the MicroBooNE CRT system and provide an overview of a series
of tests done to verify the proper operation of the system and its components
during installation, commissioning, and physics data-taking
A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification in the MicroBooNE Liquid Argon Time Projection Chamber
We have developed a convolutional neural network (CNN) that can make a
pixel-level prediction of objects in image data recorded by a liquid argon time
projection chamber (LArTPC) for the first time. We describe the network design,
training techniques, and software tools developed to train this network. The
goal of this work is to develop a complete deep neural network based data
reconstruction chain for the MicroBooNE detector. We show the first
demonstration of a network's validity on real LArTPC data using MicroBooNE
collection plane images. The demonstration is performed for stopping muon and a
charged current neutral pion data samples
Recommended from our members
Measurement of neutron production in atmospheric neutrino interactions at the Sudbury Neutrino Observatory
Neutron production in GeV-scale neutrino interactions is a poorly studied
process. We have measured the neutron multiplicities in atmospheric neutrino
interactions in the Sudbury Neutrino Observatory experiment and compared them
to the prediction of a Monte Carlo simulation using GENIE and a minimally
modified version of GEANT4. We analyzed 837 days of exposure corresponding to
Phase I, using pure heavy water, and Phase II, using a mixture of Cl in heavy
water. Neutrons produced in atmospheric neutrino interactions were identified
with an efficiency of and , for Phase I and II respectively.
The neutron production is measured as a function of the visible energy of the
neutrino interaction and, for charged current quasi-elastic interaction
candidates, also as a function of the neutrino energy. This study is also
performed classifying the complete sample into two pairs of event categories:
charged current quasi-elastic and non charged current quasi-elastic, and
and . Results show good overall agreement between data and
Monte Carlo for both phases, with some small tension with a statistical
significance below for some intermediate energies
Recommended from our members
Tests of Lorentz invariance at the Sudbury Neutrino Observatory
Experimental tests of Lorentz symmetry in systems of all types are critical for ensuring that the basic assumptions of physics are well founded. Data from all phases of the Sudbury Neutrino Observatory, a kiloton-scale heavy water Cherenkov detector, are analyzed for possible violations of Lorentz symmetry in the neutrino sector. Such violations would appear as one of eight possible signal types in the detector: six seasonal variations in the solar electron neutrino survival probability differing in energy and time dependence and two shape changes to the oscillated solar neutrino energy spectrum. No evidence for such signals is observed, and limits on the size of such effects are established in the framework of the standard model extension, including 38 limits on previously unconstrained operators and improved limits on 16 additional operators. This makes limits on all minimal, Dirac-type Lorentz violating operators in the neutrino sector available for the first time
Recommended from our members
Search for heavy neutral leptons decaying into muon-pion pairs in the MicroBooNE detector
We present upper limits on the production of heavy neutral leptons (HNLs) decaying to pairs using data collected with the MicroBooNE liquid-argon time projection chamber (TPC) operating at Fermilab. This search is the first of its kind performed in a liquid-argon TPC. We use data collected in 2017 and 2018 corresponding to an exposure of 2.0 ×1020 protons on target from the Fermilab Booster Neutrino Beam, which produces mainly muon neutrinos with an average energy of ≈800 MeV. HNLs with higher mass are expected to have a longer time of flight to the liquid-argon TPC than Standard Model neutrinos. The data are therefore recorded with a dedicated trigger configured to detect HNL decays that occur after the neutrino spill reaches the detector. We set upper limits at the 90% confidence level on the element |4|2 of the extended PMNS mixing matrix in the range |4|2−7 for Dirac HNLs and |4|2−7 for Majorana HNLs, assuming HNL masses between 260 and 385 MeV and |4|2 =|4|2 =0
- …
